Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Functional Python Programming

You're reading from   Functional Python Programming Create succinct and expressive implementations with functional programming in Python

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781784396992
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Introducing Functional Programming FREE CHAPTER 2. Introducing Some Functional Features 3. Functions, Iterators, and Generators 4. Working with Collections 5. Higher-order Functions 6. Recursions and Reductions 7. Additional Tuple Techniques 8. The Itertools Module 9. More Itertools Techniques 10. The Functools Module 11. Decorator Design Techniques 12. The Multiprocessing and Threading Modules 13. Conditional Expressions and the Operator Module 14. The PyMonad Library 15. A Functional Approach to Web Services 16. Optimizations and Improvements Index

Building namedtuples with functional constructors


There are three ways we can build namedtuple instances. The choice of technique we use is generally based on how much additional information is available at the time of object construction.

We've shown two of the three techniques in the examples in the previous section. We'll emphasize the design considerations here. It includes the following choices:

  • We can provide the parameter values according to their positions. This works out well when there are one or more expressions that we were evaluating. We used it when applying the haversine() function to the start and end points to create a Leg object.

    Leg(start, end, round(haversine(start, end),4))
    
  • We can use the *argument notation to assign parameters according to their positions in a tuple. This works out well when we're getting the arguments from another iterable or an existing tuple. We used it when using map() to apply the float() function to the latitude and longitude values.

    Point(*map...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image