Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Java Machine Learning

You're reading from   Mastering Java Machine Learning A Java developer's guide to implementing machine learning and big data architectures

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785880513
Length 556 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Uday Kamath Uday Kamath
Author Profile Icon Uday Kamath
Uday Kamath
Krishna Choppella Krishna Choppella
Author Profile Icon Krishna Choppella
Krishna Choppella
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Machine Learning Review FREE CHAPTER 2. Practical Approach to Real-World Supervised Learning 3. Unsupervised Machine Learning Techniques 4. Semi-Supervised and Active Learning 5. Real-Time Stream Machine Learning 6. Probabilistic Graph Modeling 7. Deep Learning 8. Text Mining and Natural Language Processing 9. Big Data Machine Learning – The Final Frontier A. Linear Algebra B. Probability Index

What is not machine learning?

It is important to recognize areas that share a connection with machine learning but cannot themselves be considered part of machine learning. Some disciplines may overlap to a smaller or larger extent, yet the principles underlying machine learning are quite distinct:

  • Business intelligence (BI) and reporting: Reporting key performance indicators (KPI's), querying OLAP for slicing, dicing, and drilling into the data, dashboards, and so on that form the central components of BI are not machine learning.
  • Storage and ETL: Data storage and ETL are key elements in any machine learning process, but, by themselves, they don't qualify as machine learning.
  • Information retrieval, search, and queries: The ability to retrieve data or documents based on search criteria or indexes, which form the basis of information retrieval, are not really machine learning. Many forms of machine learning, such as semi-supervised learning, can rely on the searching of similar data for modeling, but that doesn't qualify searching as machine learning.
  • Knowledge representation and reasoning: Representing knowledge for performing complex tasks, such as ontology, expert systems, and semantic webs, does not qualify as machine learning.
You have been reading a chapter from
Mastering Java Machine Learning
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781785880513
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image