Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Predictive Analytics using Rattle and Qlik Sense

You're reading from   Predictive Analytics using Rattle and Qlik Sense Create comprehensive solutions for predictive analysis using Rattle and share them with Qlik Sense

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781784395803
Length 242 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ferran Garcia Pagans Ferran Garcia Pagans
Author Profile Icon Ferran Garcia Pagans
Ferran Garcia Pagans
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Ready with Predictive Analytics FREE CHAPTER 2. Preparing Your Data 3. Exploring and Understanding Your Data 4. Creating Your First Qlik Sense Application 5. Clustering and Other Unsupervised Learning Methods 6. Decision Trees and Other Supervised Learning Methods 7. Model Evaluation 8. Visualizations, Data Applications, Dashboards, and Data Storytelling 9. Developing a Complete Application Index

Partitioning datasets and model optimization

As we've explained, in supervised learning, we split the dataset in three subsets—training, validation, and testing:

Partitioning datasets and model optimization

To create the model or learner, Rattle uses the training dataset. After creating a model, we use the validation data to evaluate its performance. To improve the performance, depending on the algorithm we're using, we can use different tuning options. After tuning, we rebuild the model and evaluate its performance again. This is an iterative process; we create the model and evaluate it until we're fine with its performance.

For simplicity, in this chapter, we'll see only model creation, and in the following chapter, we'll see model optimization, but in real life, this is an iterative process.

The examples in this chapter will not have any optimization.

Finally, when you're happy with the model, you can use the testing dataset to confirm its performance. You need to use the testing dataset because...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image