Training a neural network is a computationally intensive process that requires a significant amount of time. As the size of the data increases and the neural network gets deep, training deep learning models become more complex and requires more computing power and memory. To train our models efficiently, we can use a modern system with GPU capabilities. Deep learning libraries in R provide support for training models on multiple GPUs to accelerate the training process. We can also use cloud computing to build deep learning models. Cloud infrastructure scales efficiently and allows users to prototype them faster at a cheaper cost and optimized performance. The pay-per-use model offered by most of the cloud-based solutions makes life much more comfortable as one can quickly scale. This chapter will help you to gain an understanding...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand