Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Geospatial Analysis with Python

You're reading from   Learning Geospatial Analysis with Python Understand GIS fundamentals and perform remote sensing data analysis using Python 3.7

Arrow left icon
Product type Paperback
Published in Sep 2019
Publisher
ISBN-13 9781789959277
Length 456 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joel Lawhead Joel Lawhead
Author Profile Icon Joel Lawhead
Joel Lawhead
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: The History and the Present of the Industry FREE CHAPTER
2. Learning about Geospatial Analysis with Python 3. Learning Geospatial Data 4. The Geospatial Technology Landscape 5. Section 2: Geospatial Analysis Concepts
6. Geospatial Python Toolbox 7. Python and Geographic Information Systems 8. Python and Remote Sensing 9. Python and Elevation Data 10. Section 3: Practical Geospatial Processing Techniques
11. Advanced Geospatial Python Modeling 12. Real-Time Data 13. Putting It All Together 14. Other Books You May Enjoy

Classifying images

Automated remote sensing (ARS) is rarely ever done in the visible spectrum. ARS processes images without any human input. The most commonly available wavelengths outside of the visible spectrum are infrared and near-infrared.

The following illustration is a thermal image (band 10) from a fairly recent Landsat 8 flyover of the US Gulf Coast from New Orleans, Louisiana to Mobile, Alabama. The major natural features in the image have been labeled so that you can orient yourself:

Because every pixel in that image has a reflectance value, it is information as opposed to just color. The type of reflectance can tell us definitively what a feature is, as opposed to us guessing by looking at it. Python can see those values and pick out features the same way we intuitively do by grouping related pixel values. We can colorize pixels based on their relation to each other...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image