Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Python Data Visualization

You're reading from   Mastering Python Data Visualization Generate effective results in a variety of visually appealing charts using the plotting packages in Python

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781783988327
Length 372 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (11) Chapters Close

Preface 1. A Conceptual Framework for Data Visualization FREE CHAPTER 2. Data Analysis and Visualization 3. Getting Started with the Python IDE 4. Numerical Computing and Interactive Plotting 5. Financial and Statistical Models 6. Statistical and Machine Learning 7. Bioinformatics, Genetics, and Network Models 8. Advanced Visualization A. Go Forth and Explore Visualization Index

Stochastic block models

In the previous chapters, we have already discussed stochastic models using the Monte Carlo simulation. So far, we have been discussing graphs and networks, so purely from that context, a community structure can also be viewed as a graph. In such graphs, nodes often cluster together as densely connected subgraphs. In general, the probability of an edge between two such nodes is a function of the cluster to which the node belongs.

A popular choice for such a network partition is the stochastic block model. A simple definition of a stochastic block model is characterized by a scalar n. This represents the number of groups or the number of clusters and a matrix that shows the nodes and their connections. For a more rigorous mathematical definition, you can refer to a statistics book.

Among a few Python packages that support stochastic models, PyMC is one that offers Markov Chain Monte Carlo (MCMC) and three building blocks for probability models, such as stochastic, deterministic...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image