Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Simulation Modeling with Python

You're reading from   Hands-On Simulation Modeling with Python Develop simulation models for improved efficiency and precision in the decision-making process

Arrow left icon
Product type Paperback
Published in Nov 2022
Publisher Packt
ISBN-13 9781804616888
Length 460 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1:Getting Started with Numerical Simulation
2. Chapter 1: Introducing Simulation Models FREE CHAPTER 3. Chapter 2: Understanding Randomness and Random Numbers 4. Chapter 3: Probability and Data Generation Processes 5. Part 2:Simulation Modeling Algorithms and Techniques
6. Chapter 4: Exploring Monte Carlo Simulations 7. Chapter 5: Simulation-Based Markov Decision Processes 8. Chapter 6: Resampling Methods 9. Chapter 7: Using Simulation to Improve and Optimize Systems 10. Chapter 8: Introducing Evolutionary Systems 11. Part 3:Simulation Applications to Solve Real-World Problems
12. Chapter 9: Using Simulation Models for Financial Engineering 13. Chapter 10: Simulating Physical Phenomena Using Neural Networks 14. Chapter 11: Modeling and Simulation for Project Management 15. Chapter 12: Simulating Models for Fault Diagnosis in Dynamic Systems 16. Chapter 13: What’s Next? 17. Index 18. Other Books You May Enjoy

Summary

Knowing the basics of probability theory in depth helps us to understand how random phenomena work. We discovered the differences between a priori, compound, and conditioned probabilities. We also saw how Bayes’ theorem allows us to calculate the conditional probability of a cause of an event, starting from the knowledge of the a priori probabilities and the conditional probability. Next, we analyzed some probability distributions and how such distributions can be generated in Python.

In the final part of the chapter, we introduced the basics of synthetic data generation by analyzing a practical case of data augmentation with the Keras library. Finally, we explored power analysis for statistical tests.

In the next chapter, we will learn about the basic concepts of Monte Carlo simulation and explore some of its applications. Then, we will discover how to generate a sequence of numbers that have been randomly distributed according to Gaussian. Finally, we will take...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image