Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Elasticsearch - Second Edition

You're reading from   Mastering Elasticsearch - Second Edition Further your knowledge of the Elasticsearch server by learning more about its internals, querying, and data handling

Arrow left icon
Product type Paperback
Published in Feb 2015
Publisher
ISBN-13 9781783553792
Length 434 pages
Edition 2nd Edition
Languages
Arrow right icon
Toc

Table of Contents (11) Chapters Close

Preface 1. Introduction to Elasticsearch 2. Power User Query DSL FREE CHAPTER 3. Not Only Full Text Search 4. Improving the User Search Experience 5. The Index Distribution Architecture 6. Low-level Index Control 7. Elasticsearch Administration 8. Improving Performance 9. Developing Elasticsearch Plugins Index

Significant terms aggregation


One of the aggregations introduced after the release of Elasticsearch 1.0 is the significant_terms aggregation that we can use starting from release 1.1. It allows us to get the terms that are relevant and probably the most significant for a given query. The good thing is that it doesn't only show the top terms from the results of the given query, but also shows the one that seems to be the most important one.

The use cases for this aggregation type can vary from finding the most troublesome server working in your application environment to suggesting nicknames from the text. Whenever Elasticsearch can see a significant change in the popularity of a term, such a term is a candidate for being significant.

Note

Please remember that the significant_terms aggregation is marked as experimental and can change or even be removed in the future versions of Elasticsearch.

An example

The best way to describe the significant_terms aggregation type will be through an example...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image