Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Vector Search for Practitioners with Elastic

You're reading from   Vector Search for Practitioners with Elastic A toolkit for building NLP solutions for search, observability, and security using vector search

Arrow left icon
Product type Paperback
Published in Nov 2023
Publisher Packt
ISBN-13 9781805121022
Length 240 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jeff Vestal Jeff Vestal
Author Profile Icon Jeff Vestal
Jeff Vestal
Bahaaldine Azarmi Bahaaldine Azarmi
Author Profile Icon Bahaaldine Azarmi
Bahaaldine Azarmi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1:Fundamentals of Vector Search FREE CHAPTER
2. Chapter 1: Introduction to Vectors and Embeddings 3. Chapter 2: Getting Started with Vector Search in Elastic 4. Part 2: Advanced Applications and Performance Optimization
5. Chapter 3: Model Management and Vector Considerations in Elastic 6. Chapter 4: Performance Tuning – Working with Data 7. Part 3: Specialized Use Cases
8. Chapter 5: Image Search 9. Chapter 6: Redacting Personal Identifiable Information Using Elasticsearch 10. Chapter 7: Next Generation of Observability Powered by Vectors 11. Chapter 8: The Power of Vectors and Embedding in Bolstering Cybersecurity 12. Part 4: Innovative Integrations and Future Directions
13. Chapter 9: Retrieval Augmented Generation with Elastic 14. Chapter 10: Building an Elastic Plugin for ChatGPT 15. Index 16. Other Books You May Enjoy

Summary

After a deep exploration of the numerous technicalities and advanced methods involved in building CookBot, we can conclude that the application of RAG, ELSER, BM25, and RRF has significantly contributed to CookBot’s unique ability to answer culinary queries with enhanced precision and depth.

Throughout the course of this chapter, we’ve uncovered the potential of RAG as a retriever for finding relevant documents and as a generator for crafting detailed responses. By incorporating ELSER and BM25, the retrieval component gains the advantage of both semantic context and keyword efficiency. The fusion of these retrieval methods with RRF leads to the curation of a highly relevant set of recipes, even when faced with complex or vague queries.

The integration of RAG into CookBot’s architecture has further amplified its capabilities, demonstrating the value of an iterative approach where knowledge is refined over multiple steps. By employing GPT-4 as the generator...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image