Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Forecasting Time Series Data with Facebook Prophet

You're reading from   Forecasting Time Series Data with Facebook Prophet Build, improve, and optimize time series forecasting models using the advanced forecasting tool

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781800568532
Length 270 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Greg Rafferty Greg Rafferty
Author Profile Icon Greg Rafferty
Greg Rafferty
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Getting Started
2. Chapter 1: The History and Development of Time Series Forecasting FREE CHAPTER 3. Chapter 2: Getting Started with Facebook Prophet 4. Section 2: Seasonality, Tuning, and Advanced Features
5. Chapter 3: Non-Daily Data 6. Chapter 4: Seasonality 7. Chapter 5: Holidays 8. Chapter 6: Growth Modes 9. Chapter 7: Trend Changepoints 10. Chapter 8: Additional Regressors 11. Chapter 9: Outliers and Special Events 12. Chapter 10: Uncertainty Intervals 13. Section 3: Diagnostics and Evaluation
14. Chapter 11: Cross-Validation 15. Chapter 12: Performance Metrics 16. Chapter 13: Productionalizing Prophet 17. Other Books You May Enjoy

Chapter 3: Non-Daily Data

When Prophet was first released, it assumed all data would be on a daily scale, with one row of data per day. It has since grown to handle many different granularities of data, but because of its historical conventions, there are few things to be cautious of when working with non-daily data.

In this chapter, you will look at monthly data (and in fact, any data that is measured in timeframes greater than a day) and see how to change the frequency of predictions to avoid unexpected results. You will also look at hourly data and observe an additional component in the components plot. Finally, you will learn how to handle data that has regular gaps along the time axis.

This chapter will cover the following:

  • Using monthly data
  • Using sub-daily data
  • Using data with regular gaps
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image