Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Reinforcement Learning Quick Start Guide

You're reading from   TensorFlow Reinforcement Learning Quick Start Guide Get up and running with training and deploying intelligent, self-learning agents using Python

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789533583
Length 184 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kaushik Balakrishnan Kaushik Balakrishnan
Author Profile Icon Kaushik Balakrishnan
Kaushik Balakrishnan
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Up and Running with Reinforcement Learning FREE CHAPTER 2. Temporal Difference, SARSA, and Q-Learning 3. Deep Q-Network 4. Double DQN, Dueling Architectures, and Rainbow 5. Deep Deterministic Policy Gradient 6. Asynchronous Methods - A3C and A2C 7. Trust Region Policy Optimization and Proximal Policy Optimization 8. Deep RL Applied to Autonomous Driving 9. Assessment 10. Other Books You May Enjoy

Asynchronous Methods - A3C and A2C

We looked at the DDPG algorithm in the previous chapter. One of the main drawbacks of the DDPG algorithm (as well as the DQN algorithm that we saw earlier) is the use of a replay buffer to obtain independent and identically distributed samples of data for training. Using a replay buffer consumes a lot of memory, which is not desirable for robust RL applications. To overcome this problem, researchers at Google DeepMind came up with an on-policy algorithm called Asynchronous Advantage Actor Critic (A3C). A3C does not use a replay buffer; instead, it uses parallel worker processors, where different instances of the environment are created and the experience samples are collected. Once a finite and fixed number of samples are collected, they are used to compute the policy gradients, which are asynchronously sent to a central processor that updates...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image