Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Graph Data Modeling in Python

You're reading from   Graph Data Modeling in Python A practical guide to curating, analyzing, and modeling data with graphs

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781804618035
Length 236 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Gary Hutson Gary Hutson
Author Profile Icon Gary Hutson
Gary Hutson
Matt Jackson Matt Jackson
Author Profile Icon Matt Jackson
Matt Jackson
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Getting Started with Graph Data Modeling
2. Chapter 1: Introducing Graphs in the Real World FREE CHAPTER 3. Chapter 2: Working with Graph Data Models 4. Part 2: Making the Graph Transition
5. Chapter 3: Data Model Transformation – Relational to Graph Databases 6. Chapter 4: Building a Knowledge Graph 7. Part 3: Storing and Productionizing Graphs
8. Chapter 5: Working with Graph Databases 9. Chapter 6: Pipeline Development 10. Chapter 7: Refactoring and Evolving Schemas 11. Part 4: Graphing Like a Pro
12. Chapter 8: Perfect Projections 13. Chapter 9: Common Errors and Debugging 14. Index 15. Other Books You May Enjoy

Introducing Graphs in the Real World

Social network analysis, fraud detection, modeling the stability of systems (for example, rail and energy grids), and recommendation systems all rely on graphs as the lynchpin underpinning these types of networks. In each of these examples, the relationships between individual people, bank accounts, or other single units are fundamental to describe and model the data. As opposed to traditional data models, a graph is a perfect way to represent groups of interacting elements.

This chapter will serve as an introduction to why graphs are important and introduce you to the fundamentals of what makes up a graph network. Moreover, we will look at how to transition from traditional data storage strategies, such as relational databases (RDBs), to how you can use this knowledge to work with graph databases (GDBs). Throughout this book, we will be working with a popular graph database, namely Neo4j. This will be followed by an explanation of how graphs are utilized in the real world and then a gentle introduction to working with the main package workhorses, known as igraph and NetworkX, which are the best and most stable graph packages for graph data analysis and modeling.

In this chapter, we’re going to cover the following topics:

  • Why should you use graphs?
  • The fundamentals of nodes and edges and the properties of a graph
  • Comparing RDBs and GDBs
  • The use of graphs across various industries
  • Introduction to NetworkX and igraph
You have been reading a chapter from
Graph Data Modeling in Python
Published in: Jun 2023
Publisher: Packt
ISBN-13: 9781804618035
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image