Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with scikit-learn Quick Start Guide

You're reading from   Machine Learning with scikit-learn Quick Start Guide Classification, regression, and clustering techniques in Python

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781789343700
Length 172 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kevin Jolly Kevin Jolly
Author Profile Icon Kevin Jolly
Kevin Jolly
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introducing Machine Learning with scikit-learn FREE CHAPTER 2. Predicting Categories with K-Nearest Neighbors 3. Predicting Categories with Logistic Regression 4. Predicting Categories with Naive Bayes and SVMs 5. Predicting Numeric Outcomes with Linear Regression 6. Classification and Regression with Trees 7. Clustering Data with Unsupervised Machine Learning 8. Performance Evaluation Methods 9. Other Books You May Enjoy

Classification and Regression with Trees

Tree based algorithms are very popular for two reasons: they are interpretable, and they make sound predictions that have won many machine learning competitions on online platforms, such as Kaggle. Furthermore, they have many use cases outside of machine learning for solving problems, both simple and complex.

Building a tree is an approach to decision-making used in almost all industries. Trees can be used to solve both classification- and regression-based problems, and have several use cases that make them the go-to solution!

This chapter is broadly divided into the following two sections:

  • Classification trees
  • Regression trees

Each section will cover the fundamental theory of different types of tree based algorithms, along with their implementation in scikit-learn. By the end of this chapter, you will have learned how to aggregate several...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image