Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Machine Learning

You're reading from   Practical Machine Learning Learn how to build Machine Learning applications to solve real-world data analysis challenges with this Machine Learning book – packed with practical tutorials

Arrow left icon
Product type Paperback
Published in Jan 2016
Publisher Packt
ISBN-13 9781784399689
Length 468 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sunila Gollapudi Sunila Gollapudi
Author Profile Icon Sunila Gollapudi
Sunila Gollapudi
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introduction to Machine learning FREE CHAPTER 2. Machine learning and Large-scale datasets 3. An Introduction to Hadoop's Architecture and Ecosystem 4. Machine Learning Tools, Libraries, and Frameworks 5. Decision Tree based learning 6. Instance and Kernel Methods Based Learning 7. Association Rules based learning 8. Clustering based learning 9. Bayesian learning 10. Regression based learning 11. Deep learning 12. Reinforcement learning 13. Ensemble learning 14. New generation data architectures for Machine learning Index

Machine learning algorithms

Now, let's look at the important machine learning algorithms and some brief details about each of them. In-depth implementation aspects for each of the algorithms will be covered in later chapters. These algorithms are either classified under the problem type or the learning type. There is a simple classification of the algorithms given but it is intuitive and not necessarily exhaustive.

There are many ways of classifying or grouping machine learning algorithms, and in this book we will use the learning model based grouping. In each chapter, starting from Chapter 5, Decision Tree based learning, we will cover one or more learning models and associated algorithms. The following concept model depicts a listing of learning models:

Machine learning algorithms

Decision tree based algorithms

Decision tree based algorithms define models that are iteratively or recursively constructed based on the data provided. The goal of Decision tree based algorithms is to predict the value of a target variable given a set of input variables. Decision trees help solve classification and regression problems using tree based methods. Decisions fork in tree structures until a prediction decision is made for a given record. Some of the algorithms are as follows:

  • Random forest
  • Classification and Regression Tree (CART)
  • C4.5 and C5.0
  • Chi-square
  • Gradient boosting machines (GBM)
  • Chi-Squared Automatic Interaction Detection (CHAID)
  • Decision stump
  • Multivariate adaptive regression splines (MARS)

Bayesian method based algorithms

Bayesian methods are those that explicitly apply the Bayesian inference theorem and again solve classification and regression problems. Bayesian methods facilitate subjective probability in modeling. The following are some of the Bayesian based algorithms:

  • Naïve Bayes
  • Averaged one-dependence estimators (AODE)
  • Bayesian belief network (BBN)

Kernel method based algorithms

When we hear about kernel methods, the first thing that comes to mind is Support Vector Machines (SVM). These methods are usually a group of methods in themselves. kernel methods are concerned with pattern analysis and as explained in the preceding sections, that crux of pattern analysis includes various mapping techniques. Here, the mapping datasets include vector spaces. Some examples of kernel method based learning algorithms are listed as follows:

  • SVM
  • Linear discriminant analysis (LDA)

Clustering methods

Clustering, like regression, describes a class of problems and a class of methods. Clustering methods are typically organized by the modeling approaches such as centroid-based and hierarchical. These methods organize data into groups by assessing the similarity in the structure of input data:

  • K-means
  • Expectation maximization (EM) and Gaussian mixture models (GMM)

Artificial neural networks (ANN)

Similar to kernel methods, artificial neural networks are again a class of pattern matching techniques, but these models are inspired by the structure of biological neural networks. These methods are again used to solve classifications and regression problems. They relate to Deep learning modeling and have many subfields of algorithms that help solve specific problems in context.

Some of the methods in this category include:

  • Learning vector quantization (LVQ)
  • Self-organizing maps (SOM)
  • Hopfield network
  • Perceptron
  • Backpropagation

Dimensionality reduction

Like clustering methods, dimensionality reduction methods work iteratively and on the data structure in an unsupervised manner. Given the dataset and the dimensions, more dimensions would mean more work in the Machine learning implementation. The idea is to iteratively reduce the dimensions and bring more relevant dimensions forward. This technique is usually used to simplify high-dimensional data and then apply a supervised learning technique. Some example dimensionality reduction methods are listed as follows:

  • Multidimensional scaling (MDS)
  • Principal component analysis (PCA)
  • Projection pursuit (PP)
  • Partial least squares (PLS) regression
  • Sammon mapping

Ensemble methods

As the name suggests, ensemble methods encompass multiple models that are built independently and the results of these models are combined and responsible for overall predictions. It is critical to identify what independent models are to be combined or included, how the results need to be combined, and in what way to achieve the required result. The subset of models that are combined is sometimes referred to as weaker models as the results of these models need not completely fulfill the expected outcome in isolation. This is a very powerful and widely adopted class of techniques. The following are some of the Ensemble method algorithms:

  • Random forest
  • Bagging
  • AdaBoost
  • Bootstrapped Aggregation (Boosting)
  • Stacked generalization (blending)
  • Gradient boosting machines (GBM)

Instance based learning algorithms

Instances are nothing but subsets of datasets, and instance based learning models work on an identified instance or groups of instances that are critical to the problem. The results across instances are compared, which can include an instance of new data as well. This comparison uses a particular similarity measure to find the best match and predict. Instance based methods are also called case-based or memory-based learning. Here the focus is on the representation of the instances and similarity measures for comparison between instances. Some of the instance based learning algorithms are listed as follows:

  • k-Nearest Neighbour (k-NN)
  • Self-Organizing
  • Learning vector quantization (LVQ)
  • Self-organizing maps (SOM)

Regression analysis based algorithms

Regression is a process of refining the model iteratively based on the error generated by the model. Regression also is used to define a machine learning problem type. Some example algorithms in regression are:

  • Ordinary least squares linear regression
  • Logistic regression
  • Multivariate adaptive regression splines (MARS)
  • Stepwise regression

Association rule based learning algorithms

Given the variables, association rule based learning algorithms extract and define rules that can be applied on a dataset and demonstrate experienced-based learning, and thus prediction. These rules when associated in a multi-dimensional data context can be useful in a commercial context as well. Some of the examples of Association rule based algorithms are given as follows:

  • The Apriori algorithm
  • The Eclat algorithm
You have been reading a chapter from
Practical Machine Learning
Published in: Jan 2016
Publisher: Packt
ISBN-13: 9781784399689
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image