Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python for Finance Cookbook

You're reading from   Python for Finance Cookbook Over 50 recipes for applying modern Python libraries to financial data analysis

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781789618518
Length 432 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Eryk Lewinson Eryk Lewinson
Author Profile Icon Eryk Lewinson
Eryk Lewinson
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Financial Data and Preprocessing 2. Technical Analysis in Python FREE CHAPTER 3. Time Series Modeling 4. Multi-Factor Models 5. Modeling Volatility with GARCH Class Models 6. Monte Carlo Simulations in Finance 7. Asset Allocation in Python 8. Identifying Credit Default with Machine Learning 9. Advanced Machine Learning Models in Finance 10. Deep Learning in Finance 11. Other Books You May Enjoy

Identifying Credit Default with Machine Learning

In recent years, we have witnessed machine learning gaining more and more popularity in solving traditional business problems. Every so often, a new algorithm is published, beating the current state of the art. It is only natural for businesses (in all industries) to try to leverage the incredible powers of machine learning in their core functionalities.

Before specifying a problem, we provide a brief introduction to the field of machine learning. Machine learning can be broken down into two main areas: supervised learning and unsupervised learning. In the former, we have a target variable (label), which we try to predict as accurately as possible. In the latter, there is no target, and we try to use different techniques to draw some insights from the data. An example of unsupervised learning might be clustering, which is often...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image