Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R High Performance Programming

You're reading from   R High Performance Programming Overcome performance difficulties in R with a range of exciting techniques and solutions

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781783989263
Length 176 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Tjhi W Chandra Tjhi W Chandra
Author Profile Icon Tjhi W Chandra
Tjhi W Chandra
Aloysius Shao Qin Lim Aloysius Shao Qin Lim
Author Profile Icon Aloysius Shao Qin Lim
Aloysius Shao Qin Lim
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Understanding R's Performance – Why Are R Programs Sometimes Slow? FREE CHAPTER 2. Profiling – Measuring Code's Performance 3. Simple Tweaks to Make R Run Faster 4. Using Compiled Code for Greater Speed 5. Using GPUs to Run R Even Faster 6. Simple Tweaks to Use Less RAM 7. Processing Large Datasets with Limited RAM 8. Multiplying Performance with Parallel Computing 9. Offloading Data Processing to Database Systems 10. R and Big Data Index

Summary


In this chapter, we learned about two classes of parallelism: data parallelism and task parallelism. Data parallelism is good for tasks that can be performed in parallel on partitions of a dataset. The dataset to be processed is split into partitions and each partition is processed on a different worker processes. Task parallelism, on the other hand, divides a set of similar or different tasks to amongst the worker processes. In either case, Amdahl's law states that the maximum improvement in speed that can be achieved by parallelizing code is limited by the proportion of that code that can be parallelized.

R supports both types of parallelism using the parallel package. We learned how to implement both data parallel and task parallel algorithms using socket-based clusters and forked clusters. We also learned how to run tasks in parallel on a cluster of computers using socket-based clusters.

The examples in this chapter demonstrated that the improvement in performance by parallelizing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image