Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Exploring Deepfakes

You're reading from   Exploring Deepfakes Deploy powerful AI techniques for face replacement and more with this comprehensive guide

Arrow left icon
Product type Paperback
Published in Mar 2023
Publisher Packt
ISBN-13 9781801810692
Length 192 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Matt Tora Matt Tora
Author Profile Icon Matt Tora
Matt Tora
Bryan Lyon Bryan Lyon
Author Profile Icon Bryan Lyon
Bryan Lyon
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Part 1: Understanding Deepfakes
2. Chapter 1: Surveying Deepfakes FREE CHAPTER 3. Chapter 2: Examining Deepfake Ethics and Dangers 4. Chapter 3: Acquiring and Processing Data 5. Chapter 4: The Deepfake Workflow 6. Part 2: Getting Hands-On with the Deepfake Process
7. Chapter 5: Extracting Faces 8. Chapter 6: Training a Deepfake Model 9. Chapter 7: Swapping the Face Back into the Video 10. Part 3: Where to Now?
11. Chapter 8: Applying the Lessons of Deepfakes 12. Chapter 9: The Future of Generative AI 13. Index 14. Other Books You May Enjoy

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Network Science with Python

David Knickerbocker

ISBN: 978-1-80107-369-1

  • Explore NLP, network science, and social network analysis
  • Apply the tech stack used for NLP, network science, and analysis
  • Extract insights from NLP and network data
  • Authenticate and scrape tweets, connections, the web, and data streams
  • Discover the use of network data in machine learning projects

Graph Data Science with Neo4j

Estelle Scifo

ISBN: 978-1-80461-274-3

  • Use the Cypher query language to query graph databases such as Neo4j
  • Build graph datasets from your own data and public knowledge graphs
  • Make graph-specific predictions such as link prediction
  • Explore the latest version of Neo4j to build a graph data science pipeline
  • Run a scikit-learn prediction algorithm...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image