Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Learning Geospatial Analysis with Python-Second Edition
Learning Geospatial Analysis with Python-Second Edition

Learning Geospatial Analysis with Python-Second Edition: An effective guide to geographic information systems and remote sensing analysis using Python 3

eBook
$29.99 $43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Learning Geospatial Analysis with Python-Second Edition

Chapter 2. Geospatial Data

One of the most challenging aspects of geospatial analysis is the data. Geospatial data already includes dozens of file formats and database structures and continues to evolve and grow to include new types of data and standards. Additionally, almost any file format can technically contain geospatial information simply by adding a location. In this chapter, we'll examine some common traits of geospatial data. Then we'll look at some of the most widely used vector data types followed by raster data types. We'll gain some insight into newer, more complex types including point cloud data and web services.

An overview of common data formats

As a geospatial analyst, you may frequently encounter the following general data types:

  • Spreadsheets and comma-separated files (CSV files) or tab-separated files (TSV files)
  • Geotagged photos
  • Lightweight binary points, lines, and polygons
  • Multi-gigabyte satellite or aerial images
  • Elevation data such as grids, point clouds, or integer-based images
  • XML files
  • JSON files
  • Databases (both servers and file databases)
  • Web services

Each format contains its own challenges for access and processing. When you perform analysis on data, usually you have to do some form of preprocessing first. You might clip or subset a satellite image of a large area down to just your area of interest, or you might reduce the number of points in a collection to just the ones meeting certain criteria in your data model. A good example of this type of preprocessing is the SimpleGIS example at the end of Chapter 1, Learning Geospatial Analysis with Python. The state dataset included just the state...

Data structures

Despite dozens of formats, geospatial data have common traits. Understanding these traits can help you approach and understand unfamiliar data formats by identifying the ingredients common to nearly all spatial data. The structure of a given data format is usually driven by its intended use. Some data is optimized for efficient storage or compression, some is optimized for efficient access, some is designed to be lightweight and readable (web formats), while other data formats seek to contain as many different data types as possible.

Interestingly, some of the most popular formats today are also some of the simplest and even lack features found in more capable and sophisticated formats. Ease of use is extremely important to geospatial analysts because so much time is spent integrating data into geographic information systems as well as exchanging data among analysts. Simple data formats facilitate these activities the best.

Common traits

Geospatial analysis is an approach applying...

Spatial indexing

Geospatial datasets are often very large files easily reaching hundreds of megabytes or even several gigabytes in size. Geospatial software can be quite slow in trying to repeatedly access large files when performing analysis. As discussed briefly in Chapter 1, Learning Geospatial Analysis with Python, spatial indexing creates a guide, which allows software to quickly locate query results without examining every single feature in the dataset. Spatial indexes allow software to eliminate possibilities and perform more detailed searches or comparisons on a much smaller subset of the data.

Indexing algorithms

Many spatial indexing algorithms are derivatives of well-established algorithms used for decades on nonspatial information. The two most common spatial indexing algorithms are Quadtree index and R-tree index.

Quadtree index

The Quadtree algorithm actually represents a series of different algorithms based on a common theme. Each node in a Quadtree index contains four children...

Overviews

Overview data is most commonly found in raster formats. Overviews are resampled, lower resolution versions of raster datasets that provide thumbnail views or simply faster loading image views at different map scales. They are also known as pyramids and the process of creating them is known as pyramiding an image. These overviews are usually preprocessed and stored with the full resolution data either embedded with the file or in a separate file. The compromise of this convenience is that the additional images add to the overall file size of the dataset; however, they speed up image viewers. Vector data also has a concept of overviews, usually to give a dataset geographic context in an overview map. However, because vector data is scalable, reduced size overviews are usually created on the fly by software using a generalization operation as mentioned in Chapter 1, Learning Geospatial Analysis with Python.

Occasionally, vector data is rasterized by converting it into a thumbnail...

Metadata

As discussed in Chapter 1, Learning Geospatial Analysis with Python, metadata is any data that describes the associated dataset. Common examples of metadata include basic elements such as the footprint of the dataset on the Earth as well as more detailed information such as spatial projection and information describing how the dataset was created. Most data formats contain the footprint or bounding box of the data on the Earth. Detailed metadata is typically stored in a separate location in a standard format such as the U.S. Federal Geographic Data Committee (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM), ISO, or the newer European Union initiative, which includes metadata requirements, called the Infrastructure for Spatial Information in the European Community (INSPIRE).

An overview of common data formats


As a geospatial analyst, you may frequently encounter the following general data types:

  • Spreadsheets and comma-separated files (CSV files) or tab-separated files (TSV files)

  • Geotagged photos

  • Lightweight binary points, lines, and polygons

  • Multi-gigabyte satellite or aerial images

  • Elevation data such as grids, point clouds, or integer-based images

  • XML files

  • JSON files

  • Databases (both servers and file databases)

  • Web services

Each format contains its own challenges for access and processing. When you perform analysis on data, usually you have to do some form of preprocessing first. You might clip or subset a satellite image of a large area down to just your area of interest, or you might reduce the number of points in a collection to just the ones meeting certain criteria in your data model. A good example of this type of preprocessing is the SimpleGIS example at the end of Chapter 1, Learning Geospatial Analysis with Python. The state dataset included just the state...

Data structures


Despite dozens of formats, geospatial data have common traits. Understanding these traits can help you approach and understand unfamiliar data formats by identifying the ingredients common to nearly all spatial data. The structure of a given data format is usually driven by its intended use. Some data is optimized for efficient storage or compression, some is optimized for efficient access, some is designed to be lightweight and readable (web formats), while other data formats seek to contain as many different data types as possible.

Interestingly, some of the most popular formats today are also some of the simplest and even lack features found in more capable and sophisticated formats. Ease of use is extremely important to geospatial analysts because so much time is spent integrating data into geographic information systems as well as exchanging data among analysts. Simple data formats facilitate these activities the best.

Common traits

Geospatial analysis is an approach applying...

Spatial indexing


Geospatial datasets are often very large files easily reaching hundreds of megabytes or even several gigabytes in size. Geospatial software can be quite slow in trying to repeatedly access large files when performing analysis. As discussed briefly in Chapter 1, Learning Geospatial Analysis with Python, spatial indexing creates a guide, which allows software to quickly locate query results without examining every single feature in the dataset. Spatial indexes allow software to eliminate possibilities and perform more detailed searches or comparisons on a much smaller subset of the data.

Indexing algorithms

Many spatial indexing algorithms are derivatives of well-established algorithms used for decades on nonspatial information. The two most common spatial indexing algorithms are Quadtree index and R-tree index.

Quadtree index

The Quadtree algorithm actually represents a series of different algorithms based on a common theme. Each node in a Quadtree index contains four children...

Overviews


Overview data is most commonly found in raster formats. Overviews are resampled, lower resolution versions of raster datasets that provide thumbnail views or simply faster loading image views at different map scales. They are also known as pyramids and the process of creating them is known as pyramiding an image. These overviews are usually preprocessed and stored with the full resolution data either embedded with the file or in a separate file. The compromise of this convenience is that the additional images add to the overall file size of the dataset; however, they speed up image viewers. Vector data also has a concept of overviews, usually to give a dataset geographic context in an overview map. However, because vector data is scalable, reduced size overviews are usually created on the fly by software using a generalization operation as mentioned in Chapter 1, Learning Geospatial Analysis with Python.

Occasionally, vector data is rasterized by converting it into a thumbnail image...

Metadata


As discussed in Chapter 1, Learning Geospatial Analysis with Python, metadata is any data that describes the associated dataset. Common examples of metadata include basic elements such as the footprint of the dataset on the Earth as well as more detailed information such as spatial projection and information describing how the dataset was created. Most data formats contain the footprint or bounding box of the data on the Earth. Detailed metadata is typically stored in a separate location in a standard format such as the U.S. Federal Geographic Data Committee (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM), ISO, or the newer European Union initiative, which includes metadata requirements, called the Infrastructure for Spatial Information in the European Community (INSPIRE).

File structure


The preceding elements can be stored in a variety of ways in a single file, multiple files, or database depending on the format. Additionally, this geospatial information can be stored in a variety of formats, including embedded binary headers, XML, database tables, spreadsheets/CSV, separate text, or binary files.

Human readable formats such as XML files, spreadsheets, and structured text files require only a text editor to investigate. These files are also easily parsed and processed using Python's built-in modules, data types, and string manipulation functions. Binary-based formats are more complicated. It is thus typically easier to use a third-party library to deal with binary formats.

However, you don't have to use a third-party library, especially if you just want to investigate the data at a high level. Python's built-in struct module has everything that you need. The struct module lets you read and write binary data as strings. When using the struct module, you need...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Construct applications for GIS development by exploiting Python
  • This focuses on built-in Python modules and libraries compatible with the Python Packaging Index distribution system—no compiling of C libraries necessary
  • This practical, hands-on tutorial teaches you all about Geospatial analysis in Python

Description

Geospatial Analysis is used in almost every field you can think of from medicine, to defense, to farming. This book will guide you gently into this exciting and complex field. It walks you through the building blocks of geospatial analysis and how to apply them to influence decision making using the latest Python software. Learning Geospatial Analysis with Python, 2nd Edition uses the expressive and powerful Python 3 programming language to guide you through geographic information systems, remote sensing, topography, and more, while providing a framework for you to approach geospatial analysis effectively, but on your own terms. We start by giving you a little background on the field, and a survey of the techniques and technology used. We then split the field into its component specialty areas: GIS, remote sensing, elevation data, advanced modeling, and real-time data. This book will teach you everything you need to know about, Geospatial Analysis from using a particular software package or API to using generic algorithms that can be applied. This book focuses on pure Python whenever possible to minimize compiling platform-dependent binaries, so that you don’t become bogged down in just getting ready to do analysis. This book will round out your technical library through handy recipes that will give you a good understanding of a field that supplements many a modern day human endeavors.

Who is this book for?

If you are a Python developer, researcher, or analyst who wants to perform Geospatial, modeling, and GIS analysis with Python, then this book is for you. Familarity with digital mapping and analysis using Python or another scripting language for automation or crunching data manually is appreciated

What you will learn

  • Automate Geospatial analysis workflows using Python
  • Code the simplest possible GIS in 60 lines of Python
  • Mold thematic maps with Python tools
  • Get hold of the various forms that geospatial data comes in
  • Produce elevation contours using Python tools
  • Create flood inundation models
  • Apply Geospatial analysis to find out about real-time data tracking and for storm chasing
Estimated delivery fee Deliver to South Africa

Standard delivery 10 - 13 business days

$12.95

Premium delivery 3 - 6 business days

$34.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 31, 2015
Length: 394 pages
Edition : 1st
Language : English
ISBN-13 : 9781783552429
Category :
Languages :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to South Africa

Standard delivery 10 - 13 business days

$12.95

Premium delivery 3 - 6 business days

$34.95
(Includes tracking information)

Product Details

Publication date : Dec 31, 2015
Length: 394 pages
Edition : 1st
Language : English
ISBN-13 : 9781783552429
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 164.97
Learning Geospatial Analysis with Python-Second Edition
$54.99
Python Geospatial Analysis Cookbook
$54.99
Python Geospatial Development
$54.99
Total $ 164.97 Stars icon
Banner background image

Table of Contents

11 Chapters
1. Learning Geospatial Analysis with Python Chevron down icon Chevron up icon
2. Geospatial Data Chevron down icon Chevron up icon
3. The Geospatial Technology Landscape Chevron down icon Chevron up icon
4. Geospatial Python Toolbox Chevron down icon Chevron up icon
5. Python and Geographic Information Systems Chevron down icon Chevron up icon
6. Python and Remote Sensing Chevron down icon Chevron up icon
7. Python and Elevation Data Chevron down icon Chevron up icon
8. Advanced Geospatial Python Modeling Chevron down icon Chevron up icon
9. Real-Time Data Chevron down icon Chevron up icon
10. Putting It All Together Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.8
(4 Ratings)
5 star 50%
4 star 25%
3 star 0%
2 star 0%
1 star 25%
Zack Jul 11, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This excellent book starts with a deep history of geospatial science and then dives into practical applications of the technology for common mapping problems. What I really like about this book is that it doesn't stop at "here's how to put a Google maps widget into your web application". This book goes deeper and explains how to use real geospatial analysis. In my personal experience, knowing how to use those analytic techniques opened up new possibilities in applications that greatly increased their usefulness.A lot of material is covered in this book and it would serve as an excellent primer to anyone who's been handed a mapping project but doesn't know where to start. GIS can be a bit overwhelming at first because it's really its own little world. In order to build a working app you usually wind up using several different software libraries, special file formats like shapefile, and spatial databases. This book gives an excellent overview of each and shows how to practically apply these new skills to solve real problems.I also recommend this book if you're a GIS pro but you've spent most of your career looking at the world through an Esri lens. The open source software covered is worth knowing and you may find yourself turning to it where you would normally reach for Arc*. It's amazing how simple and lightweight some of the applications are.
Amazon Verified review Amazon
John A. Maurer IV Jan 22, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
DIY GIS via Python. Why spend gobs of money on ESRI ArcGIS or Matlab when you can do it yourself for free with Python? Power to the people (er, programmer)! Go Pythonistas! This book would make a fantastic undergraduate- and/or graduate-level textbook for an alternative Python-based GIS or scientific computing class.Not only does this book lay the groundwork to sufficiently educate the reader on geospatial analysis (its history, basic terminology, etc.), it has relevant, fun examples, plentiful screenshots throughout, and an enthusiastic and inspiring tone. It provides a crystal clear breakdown of key GIS concepts, giving equal weight to both vector and raster data sources. Motivates the reader to use programming for geospatial analysis as opposed to just traditional "point-and-click" GIS software. With programming, the possibilities are practically limitless: utilities can be coded to meet specific needs rather than being limited to whatever canned set of functions a particular software package provides.Already we get our hands dirty building a simple Python GIS example in chapter 1.Chapter 2 provides a useful survey of data formats, which can otherwise feel like a dizzying and overwhelming array of options for the novitiate. The chapter helps boil this down into the various types, categorized by vector or raster, human-readable or binary. Even in a book focused primarily on Python, it is important to lay this kind of groundwork so that the reader isn’t later bogged down or confused simply by the chosen data format of a given example, etc. The author also covers Open Geospatial Consortium (OGC) web services, web mapping, and GeoJSON.Chapter 3 highlights many of the big players in today’s geotech industry in an organized fashion that helps make sense out of the chaos: an invaluable overview for newbies to bring them up to speed on a diverse technology stack. While it is not Python per se, the chapter brings the focus back to Python at the end.Chapter 4 surveys many of the important Python geo-modules with good examples of how to use them.Chapter 5 delves more deeply into a few Python modules for greater enrichment. The reader learns a whole slew of handy tricks and tips and could already easily adapt the numerous examples provided to solve many real-world GIS problems. Highlights include Shapefile manipulation, data visualization, reading Excel spreadsheets, geocoding, and parsing GPS data.While chapter 5 focuses on aspects of vector data, chapter 6 spreads the love to raster data, accomplishing many of the more common (though complicated) remote sensing (i.e. satellite data) tasks.Chapter 7 illustrates the complexities and advantages of elevation (DEM) datasets and how Python can be leveraged to process and visualize them—-a useful follow-on to the previous vector and raster chapters since DEMs are part both (and more). With contours, shaded relief maps, and color-coded rasters, there are unique ways of analyzing elevation that differ from other datasets. Another highlight for me was the inclusion of LiDAR data.Chapter 8 showcases the kind of “heavy lifting” that can be achieved with all of the skills accrued earlier in the book, including terrain routing, street routing, flood inundation models, and vegetation analysis (via NDVI). It shows off the capabilities and flexibility inherent to a Python GIS approach.Chapter 9 goes beyond the more "static" GIS paradigm and addresses time. It puts near real-time information (tracking bus locations) onto maps, both static maps and interactive ones (via Leaflet). This chapter introduces readers to a typical Web GIS workflow using REST, Web Map Service (WMS), XML, and OpenStreetMaps.The closing chapter (chapter 10) does a good job of combining lots of the previous lessons into one “grand finale”, including vector, raster, hillshades, and real time data using state of the art examples, also incorporating Google Charts and producing PDF reports in the finished product.As the proverb goes: "Give a man a fish and you feed him for a day; teach a man to fish and you feed him for a lifetime". In a similar spirit, giving the "GIS" analyst a GUI-based software package solves a limited set of problems and leaves them hungry for the next upgrade and new buttons to press (often blindly); teach them to program, however, and they can solve any problem themselves. And they will also likely gain a better understanding of the processing that is involved along the way.
Amazon Verified review Amazon
J Parkinson Aug 12, 2016
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Great introduction to the topic. Lots of useful examples.
Amazon Verified review Amazon
John B. Nelson Nov 15, 2016
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
The easiest way to justify my one star review is with an example: The code listing starting on page 207 and extending to page 209 uses turtle graphics to draw a histogram.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact [email protected] with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at [email protected] using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on [email protected] with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on [email protected] within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on [email protected] who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on [email protected] within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela