Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Engineering with Python

You're reading from   Machine Learning Engineering with Python Manage the production life cycle of machine learning models using MLOps with practical examples

Arrow left icon
Product type Paperback
Published in Nov 2021
Publisher Packt
ISBN-13 9781801079259
Length 276 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrew P. McMahon Andrew P. McMahon
Author Profile Icon Andrew P. McMahon
Andrew P. McMahon
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Section 1: What Is ML Engineering?
2. Chapter 1: Introduction to ML Engineering FREE CHAPTER 3. Chapter 2: The Machine Learning Development Process 4. Section 2: ML Development and Deployment
5. Chapter 3: From Model to Model Factory 6. Chapter 4: Packaging Up 7. Chapter 5: Deployment Patterns and Tools 8. Chapter 6: Scaling Up 9. Section 3: End-to-End Examples
10. Chapter 7: Building an Example ML Microservice 11. Chapter 8: Building an Extract Transform Machine Learning Use Case 12. Other Books You May Enjoy

Chapter 1: Introduction to ML Engineering

Welcome to Machine Learning Engineering with Python, a book that aims to introduce you to the exciting world of making Machine Learning (ML) systems production-ready.

This book will take you through a series of chapters covering training systems, scaling up solutions, system design, model tracking, and a host of other topics, to prepare you for your own work in ML engineering or to work with others in this space. No book can be exhaustive on this topic, so this one will focus on concepts and examples that I think cover the foundational principles of this increasingly important discipline.

You will get a lot from this book even if you do not run the technical examples, or even if you try to apply the main points in other programming languages or with different tools. In covering the key principles, the aim is that you come away from this book feeling more confident in tackling your own ML engineering challenges, whatever your chosen toolset.

In this first chapter, you will learn about the different types of data role relevant to ML engineering and how to distinguish them; how to use this knowledge to build and work within appropriate teams; some of the key points to remember when building working ML products in the real world; how to start to isolate appropriate problems for engineered ML solutions; and how to create your own high-level ML system designs for a variety of typical business problems.

We will cover all of these aspects in the following sections:

  • Defining a taxonomy of data disciplines
  • Assembling your team
  • ML engineering in the real world
  • What does an ML solution look like?
  • High-level ML system design

Now that we have explained what we are going after in this first chapter, let's get started!

You have been reading a chapter from
Machine Learning Engineering with Python
Published in: Nov 2021
Publisher: Packt
ISBN-13: 9781801079259
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image