Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Data Wrangling Workshop

You're reading from   The Data Wrangling Workshop Create your own actionable insights using data from multiple raw sources

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781839215001
Length 576 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Dr. Tirthajyoti Sarkar Dr. Tirthajyoti Sarkar
Author Profile Icon Dr. Tirthajyoti Sarkar
Dr. Tirthajyoti Sarkar
Shubhadeep Roychowdhury Shubhadeep Roychowdhury
Author Profile Icon Shubhadeep Roychowdhury
Shubhadeep Roychowdhury
Brian Lipp Brian Lipp
Author Profile Icon Brian Lipp
Brian Lipp
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Data Wrangling with Python 2. Advanced Operations on Built-In Data Structures FREE CHAPTER 3. Introduction to NumPy, Pandas, and Matplotlib 4. A Deep Dive into Data Wrangling with Python 5. Getting Comfortable with Different Kinds of Data Sources 6. Learning the Hidden Secrets of Data Wrangling 7. Advanced Web Scraping and Data Gathering 8. RDBMS and SQL 9. Applications in Business Use Cases and Conclusion of the Course Appendix

Levenshtein Distance

Levenshtein distance is an advanced concept. We can think of it as the minimum number of single-character edits that are needed to convert one string into another. When two strings are identical, the distance between them is 0 – the bigger the difference, the higher the number. We can consider a threshold of distance, under which we will consider two strings as the same. Thus, we can not only rectify human error but also spread a safety net so that we don't pass all the candidates. Levenshtein distance calculation is an involved process, and we are not going to implement it from scratch here. Thankfully, like a lot of other things, there is a library available for us to do this. It is called python-Levenshtein.

Additional Software Required for This Section

The code for this exercise depends on two additional libraries. We need to install SciPy and python-Levenshtein, libraries. To install the libraries, type the following command in the running...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image