Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Analytics with R and Tableau

You're reading from   Advanced Analytics with R and Tableau Advanced analytics using data classification, unsupervised learning and data visualization

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781786460110
Length 178 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Roberto Rösler Roberto Rösler
Author Profile Icon Roberto Rösler
Roberto Rösler
Ruben Oliva Ramos Ruben Oliva Ramos
Author Profile Icon Ruben Oliva Ramos
Ruben Oliva Ramos
Jen Stirrup Jen Stirrup
Author Profile Icon Jen Stirrup
Jen Stirrup
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Advanced Analytics with R and Tableau FREE CHAPTER 2. The Power of R 3. A Methodology for Advanced Analytics Using Tableau and R 4. Prediction with R and Tableau Using Regression 5. Classifying Data with Tableau 6. Advanced Analytics Using Clustering 7. Advanced Analytics with Unsupervised Learning 8. Interpreting Your Results for Your Audience Index

What this book covers

Chapter 1, Getting Ready for Tableau and R, shows how to connect Tableau Desktop with R through calculated fields and take advantage of R functions, libraries, packages, and even saved models. We'll also cover Tableau Server configuration with R through an instance of Rserve (through the tabadmin utility), allowing anyone to view a dashboard containing R functionality. Combining R with Tableau gives you the ability to bring deep statistical analysis into a drag-and-drop visual analytics environment.

Chapter 2, The Power of R, integrates both the platforms in the previous chapter; we'll walk through different ways in which readers can use R to combine and compare data for analysis. We will cover, with examples, the core essentials of R programming such as variables, data structures in R, control mechanisms in R, and how to execute these commands in R before proceeding to later chapters that heavily rely on these concepts to script complex analytical operations.

Chapter 3, A Methodology for Advanced Analytics using Tableau and R, creates a roadmap for our analytics investigation. You'll learn how to assess the performance of both supervised and unsupervised learning algorithms, and the importance of testing. Using R and Tableau, we will explore why and how you should split your data into a training set and a test set. In order to understand how to display the data accurately as well as beautifully in Tableau, the concepts of bias and variance are explained.

Chapter 4, Prediction with R and Tableau Using Regression, considers regression from an analytics point of view. In this chapter, we look at the predictive capabilities and performance of regression algorithms. At the end of this chapter, you'll have experience in simple linear regression, multi-linear regression, and k-nearest neighbors regression using a business-oriented understanding of the actual use cases of regression techniques.

Chapter 5, Classifying Data with Tableau, shows ways to perform classification using R and visualize the results in Tableau. Classification is one of the most important tasks in analytics today. By the end of this chapter, you'll build a decision tree and classify unseen observations with k-nearest neighbors, with a focus on a business-oriented understanding of the business question using classification algorithms.

Chapter 6, Advanced Analytics Using Clustering, gives a business-oriented understanding of the business questions using clustering algorithms and applying visualization techniques that best suit the scenario.

Chapter 7, Advanced Analytics with Unsupervised Learning, teaches k-means clustering and hierarchical clustering. It has a business-oriented understanding of the business question using unsupervised learning algorithms.

Chapter 8, Interpreting Your Results f or Your Audience. How do you interpret the results and the numbers when you have them? What does a p-value mean? Analytical investigations will result in a variety of relationships in data, but the audience may have problems understanding the results. Statistical tests state a null and an alternative hypothesis, and then calculate a test statistic and report an associated p-value. In this chapter, we will look at ways in which we can answer "what if?" questions and applicable customer scenarios using cohort analysis, with a focus on how we can display the results so that the audience can make a conclusion from the tests.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image