Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building AI Intensive Python Applications

You're reading from   Building AI Intensive Python Applications Create intelligent apps with LLMs and vector databases

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781836207252
Length 298 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (18) Chapters Close

Preface 1. Chapter 1: Getting Started with Generative AI 2. Chapter 2: Building Blocks of Intelligent Applications FREE CHAPTER 3. Part 1: Foundations of AI: LLMs, Embedding Models, Vector Databases, and Application Design
4. Chapter 3: Large Language Models 5. Chapter 4: Embedding Models 6. Chapter 5: Vector Databases 7. Chapter 6: AI/ML Application Design 8. Part 2: Building Your Python Application: Frameworks, Libraries, APIs, and Vector Search
9. Chapter 7: Useful Frameworks, Libraries, and APIs 10. Chapter 8: Implementing Vector Search in AI Applications 11. Part 3: Optimizing AI Applications: Scaling, Fine-Tuning, Troubleshooting, Monitoring, and Analytics
12. Chapter 9: LLM Output Evaluation 13. Chapter 10: Refining the Semantic Data Model to Improve Accuracy 14. Chapter 11: Common Failures of Generative AI 15. Chapter 12: Correcting and Optimizing Your Generative AI Application 16. Other Books You May Enjoy Appendix: Further Reading: Index

Embedding models and vector databases – semantic long-term memory

In addition to the reasoning capabilities provided by LLMs, intelligent applications require semantic long-term memory for storing and retrieving information.

Semantic memory typically consists of two core components—AI vector embedding models and vector databases. Vector embedding models represent the semantic meaning of unstructured data, such as text or images, in large arrays of numbers. Vector databases efficiently store and retrieve these vectors to support semantic search and context retrieval. These components work together to enable the reasoning engine to access relevant context and information as needed.

Embedding models

Embedding models are AI models that map text and other data types, such as images and audio, into high-dimensional vector representations. These vector representations capture the semantic meaning of the input data, allowing for efficient similarity comparisons and semantic...

You have been reading a chapter from
Building AI Intensive Python Applications
Published in: Sep 2024
Publisher: Packt
ISBN-13: 9781836207252
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image