Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Unsupervised Learning with Python

You're reading from   Hands-On Unsupervised Learning with Python Implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781789348279
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Unsupervised Learning FREE CHAPTER 2. Clustering Fundamentals 3. Advanced Clustering 4. Hierarchical Clustering in Action 5. Soft Clustering and Gaussian Mixture Models 6. Anomaly Detection 7. Dimensionality Reduction and Component Analysis 8. Unsupervised Neural Network Models 9. Generative Adversarial Networks and SOMs 10. Assessments 11. Other Books You May Enjoy

Preface

Unsupervised learning is an increasingly important branch of data science, the goal of which is to train models that can learn the structure of a dataset and provide the user with helpful pieces of information about new samples. In many different business sectors (such as marketing, business intelligence, strategy, and so forth), unsupervised learning has always had a primary role in helping the manager to make the best decisions, based both on qualitative and, above all, quantitative approaches. In a world where data is becoming more and more pervasive and storage costs are dropping, the possibility of analyzing real, complex datasets is helping to transform old-fashioned business models into new, more accurate, more responsive, and more effective ones. That's why a data scientist might not have a clear idea about all the possibilities, focusing on the pros and cons of all methods and increasing their knowledge about the best potential strategies for every specific domain. This book is not intended to be an exhaustive resource (which is actually impossible to find), but more of a reference to set you off on your exploration of this world, providing you with different methods that can be immediately employed and evaluated. I hope that readers with different backgrounds will learn worthwhile things for improving their businesses, and that you'll seek more study of this fascinating topic!

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image