The browser is a unique environment
Scaling up in the traditional sense doesn't really work in a browser environment. When backend services are overwhelmed by demand, it's common to "throw more hardware" at the problem. Easier said than done of course, but it's a lot easier to scale up our data services these days, compared to 20 years ago. Today's software systems are designed with scalability in mind. It's helpful to our frontend application if the backend services are always available and always responsive, but that's just a small portion of the issues we face.
We can't throw more hardware at the web browsers running our code; given that; the time and space complexities of our algorithms are important. Desktop applications generally have a set of system requirements for running the software, such as OS version, minimum memory, minimum CPU, and so on. If we were to advertise requirements such as these in our JavaScript applications, our user base would shrink dramatically, and possibly generate some hate mail.
The expectation that browser-based web applications be lean and fast is an emergent phenomenon. Perhaps, that's due in part to the competition we face. There are a lot of bloated applications out there, and whether they're used in the browser or natively on the desktop, users know what bloat feels like, and generally run the other way:
Adding to our trouble is the fact that we're using a platform that was designed as a means to download and display hypertext, to click on a link, and repeat. Now we're doing the same thing, except with full-sized applications. Multi-page applications are slowly being set aside in favor of single-page applications. That being said, the application is still treated as though it were a web page. Despite all that, we're in the midst of big changes. The browser is a fully viable web platform, the JavaScript language is maturing, and there are numerous W3C specifications in progress; they assist with treating our JavaScript more like an application and less like a document. Take a look at the following diagram:
We use architectural perspectives to assess any architectural design we come up with. It's a powerful technique to examine our design through a different lens. JavaScript architecture is no different, especially for those that scale. The difference between JavaScript architecture and architecture for other environments is that ours have unique perspectives. The browser environment requires that we think differently about how we design, build, and deploy applications. Anything that runs in the browser is transient by nature, and this changes software design practices that we've taken for granted over the years. Additionally, we spend more time coding our architectures than diagramming them. By the time we sketch anything out, it's been superseded by another specification or another tool.
At an architectural level, components are the main building blocks we work with. These may be very high-level components with several levels of abstraction. Or, they could be something exposed by a framework we're using, as many of these tools provide their own idea of "components". For our purposes in this book, components sit somewhere in the middle—not too abstract, and not too implementation-specific. The idea being that we need to be thoughtful of our application composition, without worrying too much about the specifics.
When we first set out to build a JavaScript application with scale in mind, the composition of our components began to take shape. How our components are composed is a huge limiting factor in how we scale, because they set the standard. Components implement patterns for the sake of consistency, and it's important to get those patterns right:
As we'll see, the design of our various components is closely-tied to the trade-offs we make in other perspectives. And that's a good thing, because it means that if we're paying attention to the scalable qualities we're after, we can go back and adjust the design of our components in order to meet those qualities.
Components don't sit in the browser on their own. Components communicate with one another all the time. There's a wide variety of communication techniques at our disposal here. Component communication could be as simple as method invocation, or as complex as an asynchronous publish-subscribe event system. The approach we take with our architecture depends on our more specific goals. The challenge with components is that we often don't know what the ideal communication mechanism will be, till after we've started implementing our application. We have to make sure that we can adjust the chosen communication path:
Seldom will we implement our own communication mechanism for our components. Not when so many tools exist, that solve at least part of the problem for us. Most likely, we'll end up with a concoction of an existing tool for communication and our own implementation specifics. What's important is that the component communication mechanism is its own perspective, which can be designed independently of the components themselves.
JavaScript applications are always loading something. The biggest challenge is the application itself, loading all the static resources it needs to run, before the user is allowed to do anything. Then there's the application data. This needs to be loaded at some point, often on demand, and contributes to the overall latency experienced by the user. Load time is an important perspective, because it hugely contributes to the overall perception of our product quality.
There's lots we can do here to offset the negative user experience of waiting for things to load. This includes utilizing web specifications that allow us to treat applications and the services they use as installable components in the web browser platform. Of course, these are all nascent ideas, but worth considering as they mature alongside our application.
The second part of the performance perspective of our architecture is concerned with responsiveness. That is, after everything has loaded, how long does it take for us to respond to user input? Although this is a separate problem from that of loading resources from the backend, they're still closely-related. Often, user actions trigger API requests, and the techniques we employ to handle these workflows impact user-perceived responsiveness.
Because of this necessary API interaction, user-perceived responsiveness is important. While we can't make the API go any faster, we can take steps to ensure that the user always has feedback from the UI and that feedback is immediate. Then, there's the responsiveness of simply navigating around the UI, using cached data that's already been loaded, for example. Every other architectural perspective is closely-tied to the performance of our JavaScript code, and ultimately, to the user-perceived responsiveness. This perspective is a subtle sanity-check for the design of our components and their chosen communication paths.
Just because we're building a single-page application doesn't mean we no longer care about addressable URIs. This is perhaps the crowning achievement of the web— unique identifiers that point to the resource we want. We paste them in to our browser address bar and watch the magic happen. Our application most certainly has addressable resources, we just point to them differently. Instead of a URI that's parsed by the backend web server, where the page is constructed and sent back to the browser, it's our local JavaScript code that understands the URI:
Typically, these URIs will map to an API resource. When the user hits one of these URIs in our application, we'll translate the URI into another URI that's used to request backend data. The component we use to manage these application URIs is called a router, and there's lots of frameworks and libraries with a base implementation of a router. We'll likely use one of these.
The addressability perspective plays a major role in our architecture, because ensuring that the various aspects of our application have an addressable URI complicates our design. However, it can also make things easier if we're clever about it. We can have our components utilize the URIs in the same way a user utilizes links.
Rarely does software do what you need it to straight out of the box. Highly-configurable software systems are touted as being good software systems. Configuration in the frontend is a challenge because there's several dimensions of configuration, not to mention the issue of where we store these configuration options. Default values for configurable components are problematic too—where do they come from? For example, is there a default language setting that's set until the user changes it? As is often the case, different deployments of our frontend will require different default values for these settings:
Every configurable aspect of our software complicates its design. Not to mention the performance overhead and potential bugs. So, configurability is a large issue, and it's worth the time spent up-front discussing with various stakeholders what they value in terms of configurability. Depending on the nature of our deployment, users may value portability with their configuration. This means that their values need to be stored in the backend, under their account settings. Obviously decisions like these have backend design implications, and sometimes it's better to get away with approaches that don't require a modified backend service.