Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Deep Learning Essentials

You're reading from   R Deep Learning Essentials A step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781788992893
Length 378 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Joshua F. Wiley Joshua F. Wiley
Author Profile Icon Joshua F. Wiley
Joshua F. Wiley
Mark Hodnett Mark Hodnett
Author Profile Icon Mark Hodnett
Mark Hodnett
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Deep Learning FREE CHAPTER 2. Training a Prediction Model 3. Deep Learning Fundamentals 4. Training Deep Prediction Models 5. Image Classification Using Convolutional Neural Networks 6. Tuning and Optimizing Models 7. Natural Language Processing Using Deep Learning 8. Deep Learning Models Using TensorFlow in R 9. Anomaly Detection and Recommendation Systems 10. Running Deep Learning Models in the Cloud 11. The Next Level in Deep Learning 12. Other Books You May Enjoy

What is deep learning?

Deep learning is a subfield within machine learning, which in turn is a subfield within artificial intelligence. Artificial intelligence is the art of creating machines that perform functions that require intelligence when performed by people. Machine learning uses algorithms that learn without being explicitly programmed. Deep learning is the subset of machine learning that uses artificial neural networks that mimic how the brain works.

The following diagram shows the relationships between them. For example, self-driving cars are an application of artificial intelligence. A critical part of self-driving cars is to recognize other road users, cars, pedestrians, cyclists, and so on. This requires machine learning because it is not possible to explicitly program this. Finally, deep learning may be chosen as the method to implement this machine learning task:

Figure 1.1: The relationship between artificial intelligence, machine learning, and deep learning

Artificial intelligence as a field has existed since the 1940s; the definition used in the previous diagram is from Kurzweil, 1990. It is a broad field that encompasses ideas from many different fields, including philosophy, mathematics, neuroscience, and computer engineering. Machine learning is a subfield within artificial intelligence that is devoted to developing and using algorithms that learn from raw data. When the machine learning task has to predict an outcome, it is known as supervised learning. When the task is to predict from a set of possible outcomes, it is a classification task, and when the task is to predict a numeric value, it is a regression task. Some examples of classification tasks are whether a particular credit card purchase is fraudulent, or whether a given image is of a cat or a dog. An example of a regression task is predicting how much money a customer will spend in the next month. There are other types of machine learning where the learning does not predict values. This is called unsupervised learning and includes clustering (segmenting) the data, or creating a compressed format of the data.

Deep learning is a subfield within machine learning. It is called deep because it uses multiple layers to map the relationship between input and output. A layer is a collection of neurons that perform a mathematical operation on its input. This will be explained in more detail in the next section, Conceptual overview of neural networks. This deep architecture means the model is large enough to handle many variables and that it is sufficiently flexible to approximate the patterns in the data. Deep learning can also generate features as part of the overall learning algorithm, rather than feature-creation being a prerequisite step. Deep learning has proven particularly effective in the fields of image-recognition (including handwriting as well as photo- or object-classification) , speech recognition and natural-language. It has completely transformed how to use image, text, and speech data for prediction in the past few years, replacing previous methods of working with these types of data. It has also opened up these fields to a lot more people because it automates a lot of the feature-generation, which required specialist skills.

Deep learning is not the only technique available in machine learning. There are other types of machine learning algorithms; the most popular include regression, decision trees, random forest, and naive bayes. For many use cases, one of these algorithms could be a better choice. Some examples of use cases where deep learning may not be the best choice include when interpretability is an essential requirement, the dataset size is small, or you have limited resources (time and/or hardware) to develop a model. It is important to realize that despite, the industry hype, most machine learning in industry does not use deep learning. Having said that, this book covers deep learning algorithms, so we will move on. The next sections will discuss neural networks and deep neural networks in more depth.

You have been reading a chapter from
R Deep Learning Essentials - Second Edition
Published in: Aug 2018
Publisher: Packt
ISBN-13: 9781788992893
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image