Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Engineering MLOps

You're reading from   Engineering MLOps Rapidly build, test, and manage production-ready machine learning life cycles at scale

Arrow left icon
Product type Paperback
Published in Apr 2021
Publisher Packt
ISBN-13 9781800562882
Length 370 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Emmanuel Raj Emmanuel Raj
Author Profile Icon Emmanuel Raj
Emmanuel Raj
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Framework for Building Machine Learning Models
2. Chapter 1: Fundamentals of an MLOps Workflow FREE CHAPTER 3. Chapter 2: Characterizing Your Machine Learning Problem 4. Chapter 3: Code Meets Data 5. Chapter 4: Machine Learning Pipelines 6. Chapter 5: Model Evaluation and Packaging 7. Section 2: Deploying Machine Learning Models at Scale
8. Chapter 6: Key Principles for Deploying Your ML System 9. Chapter 7: Building Robust CI/CD Pipelines 10. Chapter 8: APIs and Microservice Management 11. Chapter 9: Testing and Securing Your ML Solution 12. Chapter 10: Essentials of Production Release 13. Section 3: Monitoring Machine Learning Models in Production
14. Chapter 11: Key Principles for Monitoring Your ML System 15. Chapter 12: Model Serving and Monitoring 16. Chapter 13: Governing the ML System for Continual Learning 17. Other Books You May Enjoy

Trends of ML adoption in software development

Before we delve into the workings of the MLOps method and workflow, it is beneficial to understand the big picture and trends as to where and how MLOps is disrupting the world. As many applications are becoming AI-centric, software development is evolving to facilitate ML. ML will increasingly become part of software development, mainly due to the following reasons:

  • Investments: In 2019, investments in global private AI clocked over $70 billion, with start-up investments related to AI over $37 billion, M&A $34 billion, IPOs $5 billion, and minority stake valued at around $2 billion. The forecast for AI globally shows fast growth in market value as AI reached $9.5 billion in 2018 and is anticipated to reach a market value of $118 billion by 2025. It has been assessed that growth in economic activity resulting from AI until 2030 will be of high value and significance. Currently, the US attracts ~50% of global VC funding, China ~39%, and 11% goes to Europe.
  • Big data: Data is exponentially growing in volume, velocity, veracity, and variety. For instance, observations suggest data growing in volume at 61% per annum in Europe, and it is anticipated that four times more data will be created by 2025 than exists today. Data is a requisite raw material for developing AI.
  • Infrastructural developments and adoption: Moore's law has been closely tracked and observed to have been realized prior to 2012. Post-2012, compute has been doubling every 3.4 months.
  • Increasing research and development: AI research has been prospering in quality and quantity. A prominent growth of 300% is observed in the volume of peer-reviewed AI papers from 1998 to 2018, summing up to 9% of published conference papers and 3% of peer-reviewed journal publications.
  • Industry: Based on a surveyed report, 47% of large companies have reported having adopted AI in at least one function or business unit. In 2019, it went up to 58% and is expected to increase.

    Information

    These points have been sourced from policy and investment recommendations for trustworthy AI – European commission (https://ec.europa.eu/digital-single-market/en/news/policy-and-investment-recommendations-trustworthy-artificial-intelligence) and AI Index 2019 (https://hai.stanford.edu/research/ai-index-2019).

All these developments indicate a strong push toward the industrialization of AI, and this is possible by bridging industry and research. MLOps will play a key role in the industrialization of AI. If you invest in learning this method, it will give you a headstart in your company or team and you could be a catalyst for operationalizing ML and industrializing AI.

So far, we have learned about some challenges and developments in IT, software development, and AI. Next, we will delve into understanding MLOps conceptually and learn in detail about a generic MLOps workflow that can be used commonly for any use case. These fundamentals will help you get a firm grasp of MLOps.

You have been reading a chapter from
Engineering MLOps
Published in: Apr 2021
Publisher: Packt
ISBN-13: 9781800562882
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image