Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning with R

You're reading from   Hands-On Deep Learning with R A practical guide to designing, building, and improving neural network models using R

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781788996839
Length 330 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Rodger Devine Rodger Devine
Author Profile Icon Rodger Devine
Rodger Devine
Michael Pawlus Michael Pawlus
Author Profile Icon Michael Pawlus
Michael Pawlus
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Deep Learning Basics
2. Machine Learning Basics FREE CHAPTER 3. Setting Up R for Deep Learning 4. Artificial Neural Networks 5. Section 2: Deep Learning Applications
6. CNNs for Image Recognition 7. Multilayer Perceptron for Signal Detection 8. Neural Collaborative Filtering Using Embeddings 9. Deep Learning for Natural Language Processing 10. Long Short-Term Memory Networks for Stock Forecasting 11. Generative Adversarial Networks for Faces 12. Section 3: Reinforcement Learning
13. Reinforcement Learning for Gaming 14. Deep Q-Learning for Maze Solving 15. Other Books You May Enjoy

Multilayer Perceptron for Signal Detection

This chapter will show you how to build a multilayer perceptron neural network for signal detection. We will first discuss the architecture of multilayer perceptron neural networks. Then we will cover how to prepare the data, how to decide on hidden layers and neurons, and how to train and evaluate the model.

The section on preparing the data will be important going forward as these deep learning models require data to be in particular formats in order to pass the data to the models. The hidden layer is the part of the neural network that separates it from other machine learning algorithms, and in this chapter, we will show you how to search for the optimal number of nodes in a hidden layer. In addition, over the course of this chapter, you will become much more familiar with the MXNet syntax, including the model training and evaluation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image