Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Generative Adversarial Networks with PyTorch 1.x

You're reading from   Hands-On Generative Adversarial Networks with PyTorch 1.x Implement next-generation neural networks to build powerful GAN models using Python

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781789530513
Length 312 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
John Hany John Hany
Author Profile Icon John Hany
John Hany
Greg Walters Greg Walters
Author Profile Icon Greg Walters
Greg Walters
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Introduction to GANs and PyTorch
2. Generative Adversarial Networks Fundamentals FREE CHAPTER 3. Getting Started with PyTorch 1.3 4. Best Practices for Model Design and Training 5. Section 2: Typical GAN Models for Image Synthesis
6. Building Your First GAN with PyTorch 7. Generating Images Based on Label Information 8. Image-to-Image Translation and Its Applications 9. Image Restoration with GANs 10. Training Your GANs to Break Different Models 11. Image Generation from Description Text 12. Sequence Synthesis with GANs 13. Reconstructing 3D models with GANs 14. Other Books You May Enjoy

Pix2pixHD – high-resolution image translation

Pix2pixHD was proposed by Ting-Chun Wang, Ming-Yu Liu, and Jun-Yan Zhu, et. al. in their paper, High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs, which was an upgraded version of the pix2pix model. The biggest improvement of pix2pixHD over pix2pix is that it supports image-to-image translation at 2,048x1,024 resolution and with high quality.

Model architecture

To make this happen, they designed a two-stage approach to gradually train and refine the networks, as shown in the following diagram. First, a lower resolution image of 1,024x512 is generated by a generator network, , called the global generator (the red box). Second, the image is enlarged...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image