Finally, our machine learning-based recommender system is ready. It will provide a significant boost in user experience for any bookshop, for sure. But before we start advertising it, we should make sure that it's reliable. Remember that we put aside 10% of our dataset for testing purposes. The idea is to compare the recommendations with actual ratings from the test data to see what degree of similarity exists between the two; that is, how many of the actual ratings from the dataset were in fact recommended. Depending on the data that's used for the training, you may want to test that both correct recommendations are made, but also that bad recommendations are not included (that is, the recommender does not suggest items that got low ratings, indicating a dislike). Since we only used ratings of 8, 9, and 10, we won't check if low-ranked...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia