Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R High Performance Programming

You're reading from   R High Performance Programming Overcome performance difficulties in R with a range of exciting techniques and solutions

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781783989263
Length 176 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Tjhi W Chandra Tjhi W Chandra
Author Profile Icon Tjhi W Chandra
Tjhi W Chandra
Aloysius Shao Qin Lim Aloysius Shao Qin Lim
Author Profile Icon Aloysius Shao Qin Lim
Aloysius Shao Qin Lim
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Understanding R's Performance – Why Are R Programs Sometimes Slow? FREE CHAPTER 2. Profiling – Measuring Code's Performance 3. Simple Tweaks to Make R Run Faster 4. Using Compiled Code for Greater Speed 5. Using GPUs to Run R Even Faster 6. Simple Tweaks to Use Less RAM 7. Processing Large Datasets with Limited RAM 8. Multiplying Performance with Parallel Computing 9. Offloading Data Processing to Database Systems 10. R and Big Data Index

R is single-threaded

Another way in which R is CPU limited is that, by default, it runs only on a single thread on the CPU. It does not matter if you install R on a powerful server with 64 CPU cores, R will only use one of them. For example, finding the sum of a numeric vector is an operation that can be made to run in parallel in the CPU quite easily. If there are four CPU cores available, each core can be given roughly one quarter of the data to process. Each core computes the subtotal of the chunk of data it is given, and the four subtotals are then added up to find the total sum of the whole dataset. However in R, the sum() function runs serially, processing the entire dataset on one CPU core. In fact, many Big Data operations are of a similar nature to the summation example here, with the same task running independently on many subsets of data. In such a scenario, performing the operation sequentially would be an underuse of today's mostly parallel computing architectures. In Chapter 8, Multiplying Performance with Parallel Computing, we will learn how to write parallel programs in R to overcome this limitation.

You have been reading a chapter from
R High Performance Programming
Published in: Jan 2015
Publisher:
ISBN-13: 9781783989263
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image