Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with Python

You're reading from   Advanced Deep Learning with Python Design and implement advanced next-generation AI solutions using TensorFlow and PyTorch

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781789956177
Length 468 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Vasilev Ivan Vasilev
Author Profile Icon Ivan Vasilev
Ivan Vasilev
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Core Concepts FREE CHAPTER
2. The Nuts and Bolts of Neural Networks 3. Section 2: Computer Vision
4. Understanding Convolutional Networks 5. Advanced Convolutional Networks 6. Object Detection and Image Segmentation 7. Generative Models 8. Section 3: Natural Language and Sequence Processing
9. Language Modeling 10. Understanding Recurrent Networks 11. Sequence-to-Sequence Models and Attention 12. Section 4: A Look to the Future
13. Emerging Neural Network Designs 14. Meta Learning 15. Deep Learning for Autonomous Vehicles 16. Other Books You May Enjoy

Introducing AlexNet

The first model we'll discuss is the winner of the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC, or simply ImageNet). It's nicknamed AlexNet (ImageNet Classification with Deep Convolutional Neural Networks, https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf), after one of its authors, Alex Krizhevsky. Although this model is rarely used nowadays, it's an important milestone in contemporary deep learning.

The following diagram shows the network architecture:

The AlexNet architecture. The original model was split in two, so it can fit on the memory of two GPUs

The model has five cross-correlated convolutional layers, three overlapping max pooling layers, three fully connected layers, and ReLU activations. The output is a 1,000-way softmax (one for each ImageNet class). The first...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image