Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Intelligence for Big Data

You're reading from   Artificial Intelligence for Big Data Complete guide to automating Big Data solutions using Artificial Intelligence techniques

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788472173
Length 384 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Anand Deshpande Anand Deshpande
Author Profile Icon Anand Deshpande
Anand Deshpande
Manish Kumar Manish Kumar
Author Profile Icon Manish Kumar
Manish Kumar
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Big Data and Artificial Intelligence Systems 2. Ontology for Big Data FREE CHAPTER 3. Learning from Big Data 4. Neural Network for Big Data 5. Deep Big Data Analytics 6. Natural Language Processing 7. Fuzzy Systems 8. Genetic Programming 9. Swarm Intelligence 10. Reinforcement Learning 11. Cyber Security 12. Cognitive Computing 13. Other Books You May Enjoy

Frequently asked questions


Q: What is the difference between supervised learning and reinforcement learning?

A: In the case of supervised learning algorithms, the model is trained based on historical data which describes the trend for the data historically and establishes a correlation between the event data and resultant output. In that case, the supervised learning model is a curve fitting exercise that maps the data points (independent variables) to a set of output variables (dependent variables). Availability of the historical data is essential for supervised learning. In case of reinforcement learning, the agent is modeled based on the rewards it receives based on the action(s) it takes within the context of the environment in which it is operating. There is no historical data available to the agent to train itself. However, a hybrid approach often works great where the agent is aware of the historical trends as well as applies exploration and exploitation strategies in order to maximize...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image