Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Hands-On Natural Language Processing with Python
Hands-On Natural Language Processing with Python

Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP applications

Arrow left icon
Profile Icon Shanmugamani Profile Icon Arumugam Profile Icon Byiringiro Profile Icon Joshi Profile Icon Muthuswamy +1 more Show less
Arrow right icon
AU$24.99 per month
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.8 (4 Ratings)
Paperback Jul 2018 312 pages 1st Edition
eBook
AU$33.99 AU$48.99
Paperback
AU$60.99
Subscription
Free Trial
Renews at AU$24.99p/m
Arrow left icon
Profile Icon Shanmugamani Profile Icon Arumugam Profile Icon Byiringiro Profile Icon Joshi Profile Icon Muthuswamy +1 more Show less
Arrow right icon
AU$24.99 per month
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.8 (4 Ratings)
Paperback Jul 2018 312 pages 1st Edition
eBook
AU$33.99 AU$48.99
Paperback
AU$60.99
Subscription
Free Trial
Renews at AU$24.99p/m
eBook
AU$33.99 AU$48.99
Paperback
AU$60.99
Subscription
Free Trial
Renews at AU$24.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $24.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Natural Language Processing with Python

Getting Started

Natural language processing (NLP) is the field of understanding human language using computers. It involves the analysis and of large volumes of natural language data using computers to glean meaning and value for consumption in real-world applications. While NLP has been around since the 1950s, there has been tremendous growth in practical applications in the area, due to recent advances in machine learning (ML) and deep learning. The majority of this book will focus on various real-world applications of NLP, such as text classification, and sub-tasks of NLP, such as Named Entity Recognition (NER), with a particular emphasis on deep learning approaches. In this chapter, we will first introduce the basic concepts and terms in NLP. Following this, we will discuss some of the currently used applications that leverage NLP.

Basic concepts and terminologies in NLP

The following are some of the important terminologies and concepts in NLP mostly related to the language data. Getting familiar with these terms and concepts will help the reader in getting up to speed in understanding the contents in later chapters of the book:

  • Text corpus or corpora
  • Paragraph
  • Sentences
  • Phrases and words
  • N-grams
  • Bag-of-words

We will explain these in the following sections.

Text corpus or corpora

The language data that all NLP tasks depend upon is called the text corpus or simply corpus. A corpus is a large set of text data that can be in one of the languages like English, French, and so on. The corpus can consist of a single document or a bunch of documents. The source of the text corpus can be social network sites like Twitter, blog sites, open discussion forums like Stack Overflow, books, and several others. In some of the tasks like machine translation, we would require a multilingual corpus. For example we might need both the English and French translations of the same document content for developing a machine translation model. For speech tasks, we would also need human voice recordings and the corresponding transcribed corpus.

In most of the later chapters, we will be using text corpus and speech recordings available from the internet or open source data repositories. For many of the NLP task, the corpus is split into chunks for further analysis. These chunks could be at the paragraph, sentence, or word level. We will touch upon these in the following sections.

Paragraph

A paragraph is the largest unit of text handled by an NLP task. Paragraph level boundaries by itself may not be much use unless broken down into sentences. Though sometimes the paragraph may be considered as context boundaries. Tokenizers that can split a document into paragraphs are available in some of the Python libraries. We will look at such tokenizers in later chapters.

Sentences

Sentences are the next level of lexical unit of language data. A sentence encapsulates a complete meaning or thought and context. It is usually extracted from a paragraph based on boundaries determined by punctuations like period. The sentence may also convey opinion or sentiment expressed in it. In general, sentences consists of parts of speech (POS) entities like nouns, verbs, adjectives, and so on. There are tokenizers available to split paragraphs to sentences based on punctuations.

Phrases and words

Phrases are a group of consecutive words within a sentence that can convey a specific meaning. For example, in the sentence Tomorrow is going to be a rainy day the part going to be a rainy day expresses a specific thought. Some of the NLP tasks extract key phrases from sentences for search and retrieval applications. The next smallest unit of text is the word. The common tokenizers split sentences into text based on punctuations like spaces and comma. One of the problems with NLP is ambiguity in the meaning of same words used in different context. We will later see how this is handled well when we discuss word embeddings.

N-grams

A sequence of characters or words forms an N-gram. For example, character unigram consists of a single character, a bigram consists of a sequence of two characters and so on. Similarly word N-grams consists of a sequence of n words. In NLP, N-grams are used as features for tasks like text classification.

Bag-of-words

Bag-of-words in contrast to N-grams does not consider word order or sequence. It captures the word occurrence frequencies in the text corpus. Bag-of-words is also used as features in tasks like sentiment analysis and topic identification.

In the following sections, we will look at an overview of the following applications of NLP:

  • Analyzing sentiment
  • Recognizing named entities
  • Linking entities
  • Translating text
  • Natural language interfaces
  • Semantic Role Labeling
  • Relation extraction
  • SQL query generation, or semantic parsing
  • Machine Comprehension
  • Textual entailment
  • Coreference resolution
  • Searching
  • Question answering and chatbots
  • Converting text to voice
  • Converting voice to text
  • Speaker identification
  • Spoken dialog systems
  • Other applications

Applications of NLP

In this section, we will provide an overview of the major applications of NLP. While the topics listed here are not quite exhaustive, they will give the reader a sense of the wide range of applications where NLP is used.

Analyzing sentiment

The sentiment in a sentence or text reflects the overall positive, negative, or neutral opinion or thought of the person who produces or consumes it. It indicates whether a person is happy, unhappy, or neutral about the subject or context that describes the text. It can be quantified as a discrete value, such as 1 for happy, -1 for unhappy, and 0 for neutral, or it can be quantified on a continuous scale of values, from 0-1. Sentiment analysis, therefore, is the process of deriving this value from a piece of text that can be obtained from different data sources, such as social networks, product reviews, news articles, and so on. One real-world application of sentiment analysis is in social network data to derive actionable insights, such as customer satisfaction, product or brand popularity, fashion trends, and so on. The screenshot that follows shows one of the applications of sentiment analysis, in capturing the overall opinion of a particular news article about Google. The reader may refer to the application, or API, from Google Cloud at https://cloud.google.com/natural-language/:

The preceding screenshot indicates that sentiment data is captured for the whole document, as well as at the individual sentence level.

Recognizing named entities

NER is a type of text annotation task. In NER, words or tokens in a piece of text are labeled or annotated into categories, such as organizations, locations, people, and so on. In effect, NER converts unstructured text data into structured data that can later be used for further analysis. The following screenshot is a visualization from the Google Cloud API. The reader can try out the API with the link provided in the preceding subsection:

The output result in the preceding screenshot shows how the different entities, such as ORGANISATION (Google), PERSON (Sundar Pitchai), EVENT (CONSUMER ELECTRONICS SHOW), and so on, are automatically extracted from the unstructured raw text by NER. The output also gives the sentiment for each label or category, based on sentiment analysis. The reader can experiment with different text using the link provided earlier. When we click on the Categories tab, we can see the following:

The preceding screenshot shows how the system also classifies a particular piece of text into Computer & Electronics, News, and so on, using the recognized named entities in the text. Such a categorization, called topic modeling, is another important NLP task, used to identify the main theme or topic of a sentence or document.

Linking entities

Another practical application is entity linking. One good example of it can be found in the Microsoft Azure Text Analytics API, at https://azure.microsoft.com/is-is/services/cognitive-services/text-analytics/. The following screenshot shows output from a sample text:

The preceding screenshot shows how the system has automatically extracted the entity Seattle as a place. Interestingly, it has also correctly extracted the Space Needle as a landmark place, by linking it with Seattle. This shows how powerful named entity linking can be when extracting useful relationships between entities.

Translating text

Machine translation is the task of translating a given piece of text from one language to another target language. The language of the task is first identified, and then translated into the target language. The translation app from Google has proven very useful for traveling and has taken down language barriers. The latest techniques have improved the translation accuracy by a large margin.

Following is an example of translation from Chinese to English, using Google Translate at https://cloud.google.com/translate/:

The preceding screenshot also shows the JSON response of the translated text, when we use the Translation API service from Google (https://cdn-images-1.medium.com/max/1600/1*3f4l4lrLFFhgvVsvjhNzAQ.jpeg).

Natural Language Inference

Natural Language Inference (NLI) tasks classify the relationship between a premise and hypothesis. During inference, a premise and hypothesis are given as input to output whether a hypothesis is true based on a given premise.

Semantic Role Labeling

Semantic Role Labeling (SRL) determines the relationship between a given sentence and a predicate, such as a verb. Sometimes, the inference is provided as a question. An example of a role might be: where or when did something happen? The following is a visualization from http://demo.allennlp.org/semantic-role-labeling:

The preceding visualization shows semantic labeling, which created semantic associations between the different pieces of text, such as The keys being needed for the purpose to access the building. The reader may experiment with different examples using the URL link provided earlier.

Relation extraction

Relation extraction predicts a relationship when a text and type of relation are provided. There may be cases where the relationships can't be extracted. The following screenshot shows an example of relation extraction, based on predicates and objects:

Example of relation extraction

The preceding example shows relationship extraction from the sample text to a subject, a predicate, and objects.

SQL query generation, or semantic parsing

Semantic parsing helps to convert a natural language into SQL queries in order to query a database. The following screenshot shows an example of converting a free text query to a DBpedia database SPARQL query, which is quite similar to SQL:

The preceding visualization shows the query Who is Tom Cruise, converted into a SPARQL query at the bottom. You can experiment with other queries at http://quepy.machinalis.com/.

Machine Comprehension

Machine Comprehension (MC) answers questions from a paragraph. It is akin to school children doing comprehension tests. The following screenshot is a visualization from http://demo.allennlp.org/machine-comprehension, for the question Who stars in The Matrix? The answer is shown in the screenshot, along with the paragraph:

We can also see a visualization of how the model works, by highlighting certain words:

Textual Entailment

Textual Entailment (TE) predicts whether the facts in different texts are the same. The following is a visualization from http://demo.allennlp.org/textual-entailment:

The premise is: If you help the needy, God will reward you. The hypothesis is: Giving money to the poor has good consequences. The probabilities of Entailment, Contradiction, and Neutral are presented.

Coreference resolution

Searching

Question answering and chatbots

For question answering systems, a context is supplied with a question in order to generate an answer. The schema of a chatbot is shown in the following screenshot from https://aws.amazon.com/lex/details/:

Chatbots are application-specific, as integration varies among applications.

Converting text-to-voice

Sometimes, a text has to be converted into a voice. It can be useful for a personal bot to speak back to a user.

Let's look at how to use the AWS API for text-to-speech Amazon Polly. With the API, you can pass the text and convert it to speech. The audio file can be either streamed or downloaded.

The voice should be natural sounding, to connect with the user. Google can provide this in 30 different voices, in 12 different languages. The speed and pitch can be adjusted. Go to https://cloud.google.com/text-to-speech/ and try out a demo. The following screenshot shows an example; all of the parameters can be tuned:

Tuning of parameters

The requests can be sent from any connected device, such as a mobile, car, TV, and so on. It can be used for customer service, presenting educational text, or for animation content.

Converting voice-to-text

Sometimes, a voice has to be converted to text. This is a speech recognition problem. The Google speech recognition system works in 120 languages. The audio can be streamed, or a prerecorded video can be sent. Formatting can be done for different categories, such as proper nouns and punctuation. The following example is from https://cloud.google.com/speech-to-text/:

There are different models provided, for videos, phone calls, and search-based audio. This works even when there is background noise, and the system can filter inappropriate content.

Speaker identification

Spoken dialog systems

Home assistants, such as Google Voice, Apple's Siri, and Amazon's Alexa, are examples of spoken dialog systems. All of the applications, such as chatbots, voice-to-text, text-to-voice, speaker identification, and searching, can be combined to form the experience of spoken dialog systems.

Other applications

There are several other applications of NLP; the following is a list of some of them:

  • Detecting spam: The emails that we receive can be classified as spam or not spam.
  • News classification: It can be useful to classify a news item based on several categories.
  • Identifying the speakers, gender, or age: From a piece of text, the writer's gender and age can be detected. Similar attributes can be marked with voice data.
  • Discovering topics: The topics of an article can be identified.
  • Generating text: Text generated by machines has a lot of interesting applications.
  • Finding duplicates: Skype has launched a live translation feature that involves speech to text, machine translation, and text-to-speech.
  • Summarizing text: The summarization task takes a text as input and outputs a summary of that text. The summary is usually much shorter than the original text. For example, after a meeting, the transcript text can be summarized and sent to everyone.
  • Comprehending paragraphs: Paragraph comprehension is the high school task of answering questions, with respect to a given piece of prose.
  • Constituency parsing: Constituency parsing predicts a tree composition of a sentence into its constituents http://demo.allennlp.org/constituency-parsing.

Summary

In this chapter, you learned the basics of NLP and saw several applications where it can be useful. You saw some APIs provided by cloud providers that are used to access NLP applications. Having seen the cloud products, you will learn the science behind the applications in future chapters.

In the next chapter, we will look at the basics of the NLTK library. We will cover basic feature engineering and will program a simple task for text classification.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • • Weave neural networks into linguistic applications across various platforms
  • • Perform NLP tasks and train its models using NLTK and TensorFlow
  • • Boost your NLP models with strong deep learning architectures such as CNNs and RNNs

Description

Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts.

Who is this book for?

Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.

What you will learn

  • •Implement semantic embedding of words to classify and find entities
  • •Convert words to vectors by training in order to perform arithmetic operations
  • •Train a deep learning model to detect classification of tweets and news
  • •Implement a question-answer model with search and RNN models
  • •Train models for various text classification datasets using CNN
  • •Implement WaveNet a deep generative model for producing a natural-sounding voice
  • •Convert voice-to-text and text-to-voice
  • •Train a model to convert speech-to-text using DeepSpeech

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 18, 2018
Length: 312 pages
Edition : 1st
Language : English
ISBN-13 : 9781789139495
Category :
Languages :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $24.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jul 18, 2018
Length: 312 pages
Edition : 1st
Language : English
ISBN-13 : 9781789139495
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
AU$24.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
AU$249.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just AU$5 each
Feature tick icon Exclusive print discounts
AU$349.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just AU$5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total AU$ 182.97
Natural Language Processing and Computational Linguistics
AU$60.99
Natural Language Processing with TensorFlow
AU$60.99
Hands-On Natural Language Processing with Python
AU$60.99
Total AU$ 182.97 Stars icon
Banner background image

Table of Contents

14 Chapters
Getting Started Chevron down icon Chevron up icon
Text Classification and POS Tagging Using NLTK Chevron down icon Chevron up icon
Deep Learning and TensorFlow Chevron down icon Chevron up icon
Semantic Embedding Using Shallow Models Chevron down icon Chevron up icon
Text Classification Using LSTM Chevron down icon Chevron up icon
Searching and DeDuplicating Using CNNs Chevron down icon Chevron up icon
Named Entity Recognition Using Character LSTM Chevron down icon Chevron up icon
Text Generation and Summarization Using GRUs Chevron down icon Chevron up icon
Question-Answering and Chatbots Using Memory Networks Chevron down icon Chevron up icon
Machine Translation Using the Attention-Based Model Chevron down icon Chevron up icon
Speech Recognition Using DeepSpeech Chevron down icon Chevron up icon
Text-to-Speech Using Tacotron Chevron down icon Chevron up icon
Deploying Trained Models Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.8
(4 Ratings)
5 star 25%
4 star 25%
3 star 0%
2 star 0%
1 star 50%
Russell Jurney Jul 07, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book’s coverage of things you can do to text data using natural language processing is excellent! It is quite a menu to choose from. It does assume you know Python but it says so at the beginning so the negative reviews aren’t valid.
Amazon Verified review Amazon
Santhosh Jan 29, 2020
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Lacks depth in the discussions, though the book covers important topics in NLP.Not worth the price.I supplement the book with Internet resources.
Amazon Verified review Amazon
Gary Woodfine Feb 24, 2019
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
I don't think I can quite put into words, just how disappointed I am with this book. I feel the authors did an extremely poor job of attempting to explain this really interesting subject. For the most part, one might get the impression that authors took snippets from other books on the subject and tried to weave it into their book.I have had to re-read several chapters of the book, several times in order to try understand what it is the authors are trying to explain. I am really interested in the subject, but in my opinion this book, has actually made it more difficult for me to understand the subject!It may of course, just be me, but I don't think this book offers a hands on approach at all
Amazon Verified review Amazon
Edward Nelson Apr 11, 2019
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
I got to Chapter 4, where the authors begin to tackle neural network NLP models. The main code example in the book has errors and is incomplete. The authors use advanced functions such as a generator and name spaces, with no explanation (and a decent programmer would have trouble figuring out what is going, even after consulting information about the commands used on the Internet). So, I thought, they should have a working example in the code base for the chapter. What I found instead was a mess. I found no code for the only real example of code in the chapter. I found code that belonged under subject headings in other chapters. Of 10 files, I found only 3 with passing relevance to the chapter. These are incomplete (e.g. using data files the whereabouts of which I cannot determine) and are not code that is discussed in the chapter. I haven't taken a close look at subsequent chapters, but suspect, from a quick look through the code base and the fact that code from Ch 4 belonged in other sections of the book, that the situation is unlikely to be better there. I complained to the publisher and their solution (or more likely the authors') was to publish the code on GitHub. However, the GitHub code for chapter 4 is identical to the code with which I had problems (I did a diff across all the files).
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.