It is also important for data scientists to be able to understand the scale of data that they are working with. There might be tasks related to medical research that span thousands of patients, with hundreds of features that can be processed on a single node device. However, tasks such as advertising, where companies collect several petabytes of data on customers based on every online advertisement that is served to the user, may require several thousand machines to compute and train ML algorithms. Deep learning algorithms are GPU-intensive and require a different type of machine than other ML algorithms. In this book, for each algorithm, we supply a description of how it is implemented simply using Python libraries, and then, how it can be scaled on large AWS clusters using technologies such as Spark and AWS SageMaker...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand