Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering SFML Game Development

You're reading from   Mastering SFML Game Development Inject new life and light into your old SFML projects by advancing to the next level.

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781786469885
Length 442 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Raimondas Pupius Raimondas Pupius
Author Profile Icon Raimondas Pupius
Raimondas Pupius
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Under the Hood - Setting up the Backend 2. Its Game Time! - Designing the Project FREE CHAPTER 3. Make It Rain! - Building a Particle System 4. Have Thy Gear Ready - Building Game Tools 5. Filling the Tool Belt - a few More Gadgets 6. Adding Some Finishing Touches - Using Shaders 7. One Step Forward, One Level Down - OpenGL Basics 8. Let There Be Light - An Introduction to Advanced Lighting 9. The Speed of Dark - Lighting and Shadows 10. A Chapter You Shouldnt Skip - Final Optimizations

Drawing with vertex indices


One last thing that is quite important for us before moving on is covering a more efficient way of rendering shapes. Our current method is fine for rendering a single triangle, but it can get inefficient really quickly when rendering something more complex, like a cube. If we are using vertices only, it would require a grand total of 36 to render six cube faces. A much more efficient approach would obviously be submitting eight vertices for each corner of the cube and then reusing them to draw each face. Luckily, there is a way to do just that by using an index array.

Using indices simply means that for each model we are drawing, we also need to store an array of indices that represent the draw order of vertices. Each vertex in a model is given an index, starting from 0. An array of these indices would then be used to connect the vertices, instead of having to re-submit them. Let's implement this functionality, starting with the GL_Model class:

class GL_Model {...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image