Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Python Data Science Essentials
Python Data Science Essentials

Python Data Science Essentials: A practitioner's guide covering essential data science principles, tools, and techniques , Third Edition

Arrow left icon
Profile Icon Alberto Boschetti Profile Icon Luca Massaron
Arrow right icon
AU$36.99 AU$53.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (2 Ratings)
eBook Sep 2018 472 pages 3rd Edition
eBook
AU$36.99 AU$53.99
Paperback
AU$67.99
Subscription
Free Trial
Renews at AU$24.99p/m
Arrow left icon
Profile Icon Alberto Boschetti Profile Icon Luca Massaron
Arrow right icon
AU$36.99 AU$53.99
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (2 Ratings)
eBook Sep 2018 472 pages 3rd Edition
eBook
AU$36.99 AU$53.99
Paperback
AU$67.99
Subscription
Free Trial
Renews at AU$24.99p/m
eBook
AU$36.99 AU$53.99
Paperback
AU$67.99
Subscription
Free Trial
Renews at AU$24.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Python Data Science Essentials

Data Munging

We are just getting into the action with data! In this chapter, you'll learn how to munge data. What does data munging mean ?

The term mung is a technical term that was coined about half a century ago by students of at Massachusetts Institute of Technology (MIT). Munging means to change, in a series of well-specified and reversible steps, a piece of original data to a completely different (and hopefully more useful) one. Deep-rooted in hacker culture, munging is often described in the data science pipeline using other, almost synonymous, terms such as data wrangling or data preparation.

Given such premises, in this chapter, the following topics will be covered:

  • The data science process (so that you'll know what is going on and what's next)
  • Uploading data from a file
  • Selecting the data you need
  • Cleaning up any missing or wrong data
  • Adding, inserting...

The data science process

Although every data science project is different, for our illustrative purposes, we can partition an ideal data science project into a series of reduced and simplified phases.

The process starts by obtaining data (a phase known as data ingestion). Data ingestion implies a series of possible alternatives, from simply uploading data to assembling it from RDBMS or NoSQL repositories, or from synthetically generating it to scraping it from web APIs or HTML pages.

Especially when faced with novel challenges, uploading data can reveal itself as a critical part of a data scientist's work. Your data can arrive from multiple sources: databases, CSV or Excel files, raw HTML, images, sound recordings, APIs (if you are clueless about what an API is, you can read a good tutorial about APIs with Python here: https://www.dataquest.io/blog/python-api-tutorial/) providing...

Data loading and preprocessing with pandas

In the previous chapter, we discussed where to find useful datasets and examined the basic import commands of Python packages. In this section, having kept your toolbox ready, you are about to learn how to structurally load, manipulate, process, and polish data using pandas and NumPy.

Fast and easy data loading

Let's start with a CSV file and pandas. The pandas library offers the most accessible and complete functionality to load tabular data from a file (or a URL). By default, it will store data in a specialized pandas data structure, index each row, separate variables by custom delimiters, infer the right data type for each column, convert data (if necessary), as well as parse...

Working with categorical and textual data

Typically, you'll find yourself dealing with two main kinds of data: categorical and numerical. Numerical data, such as temperature, amount of money, days of usage, or house number, can be composed of either floating-point numbers (such as 1.0, -2.3, 99.99, and so on) or integers (such as -3, 9, 0, 1, and so on). Each value that the data can assume has a direct relation with others since they're comparable. In other words, you can say that a feature with a value of 2.0 is greater (actually, it is double) than a feature that assumes a value of 1.0. This type of data is very well-defined and comprehensible, with binary operators such as equal to, greater than, and less than.

The other type of data you might see in your career is the categorical type. A categorical datum expresses an attribute that cannot be measured and assumes...

Data processing with NumPy

Having introduced the essential pandas commands to upload and preprocess your data in memory completely, in smaller batches, or even in single data rows, at this point of the data science pipeline, you'll have to work on it in order to prepare a suitable data matrix for your supervised and unsupervised learning procedures.

As a best practice, we advise that you divide the task between a phase of your work when your data is still heterogeneous (a mix of numerical and symbolic values) and another phase when it is turned into a numeric table of data. A table of data, or matrix, is arranged in rows that represent your examples, and columns that contain the characteristic observed values of your examples, which are your variables.

Following our advice, you have to wrangle between two key Python packages for scientific analysis, pandas and NumPy, and...

Creating NumPy arrays

There is more than one way to create NumPy arrays. The following are some of the ways you can create them:

  • By transforming an existing data structure into an array
  • By creating an array from scratch and populating it with default or calculated values
  • By uploading some data from a disk into an array

If you are going to transform an existing data structure, the odds are in favor of you working with a structured list or a pandas DataFrame.

From lists to unidimensional arrays

One of the most common situations you will encounter when working with data is transforming a list into an array.

When operating such a transformation, it is important to consider the objects the lists contain because this will determine...

NumPy fast operation and computations

When arrays need to be manipulated by mathematical operations, you just need to apply the operation on the array with respect to a numerical constant (a scalar), or an array of the same shape:

In: import numpy as np
a = np.arange(5).reshape(1,5)
a += 1
a*a

Out: array([[ 1, 4, 9, 16, 25]])

As a result, the operation is to be performed element-wise; that is, every element of the array is operated by either the scalar value or the corresponding element of the other array.

When operating on arrays of different dimensions, it is still possible to obtain element-wise operations without having to restructure the data if one of the corresponding dimensions is 1. In fact, in such a case, the dimension of size 1 is stretched until it matches the dimension of the corresponding array. This conversion is called broadcasting.

For instance:

...

Summary

In this chapter, we discussed how pandas and NumPy can provide you with all the tools to load and effectively mung your data.

We started with pandas and its data structures, DataFrames and series, and went through to the final NumPy two-dimensional arrays with a data structure suitable for subsequent experimentation and machine learning. In doing so, we touched upon subjects such as the manipulation of vectors and matrices, categorical data encoding, textual data processing, fixing missing data and errors, slicing and dicing, merging, and stacking.

pandas and NumPy surely offer many more functions than the essential building blocks we presented here, as well as the commands and procedures illustrated. You can now take any available raw data and apply all the cleaning and shaping transformations necessary for your data science project.

In the next chapter, we will take...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • •A one-stop guide to Python libraries such as pandas and NumPy
  • •Comprehensive coverage of data science operations such as data cleaning and data manipulation
  • •Choose scalable learning algorithms for your data science tasks

Description

Fully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn. The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You’ll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost. By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users

Who is this book for?

If you’re a data science entrant, data analyst, or data engineer, this book will help you get ready to tackle real-world data science problems without wasting any time. Basic knowledge of probability/statistics and Python coding experience will assist you in understanding the concepts covered in this book.

What you will learn

  • • Set up your data science toolbox on Windows, Mac, and Linux
  • • Use the core machine learning methods offered by the scikit-learn library
  • • Manipulate, fix, and explore data to solve data science problems
  • • Learn advanced explorative and manipulative techniques to solve data operations
  • • Optimize your machine learning models for optimized performance
  • • Explore and cluster graphs, taking advantage of interconnections and links in your data

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Sep 28, 2018
Length: 472 pages
Edition : 3rd
Language : English
ISBN-13 : 9781789531893
Category :
Languages :
Concepts :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Sep 28, 2018
Length: 472 pages
Edition : 3rd
Language : English
ISBN-13 : 9781789531893
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
AU$24.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
AU$249.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just AU$5 each
Feature tick icon Exclusive print discounts
AU$349.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just AU$5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total AU$ 196.97
Data Science Algorithms in a Week
AU$60.99
Python Data Science Essentials
AU$67.99
Principles of Data Science
AU$67.99
Total AU$ 196.97 Stars icon
Banner background image

Table of Contents

10 Chapters
First Steps Chevron down icon Chevron up icon
Data Munging Chevron down icon Chevron up icon
The Data Pipeline Chevron down icon Chevron up icon
Machine Learning Chevron down icon Chevron up icon
Visualization, Insights, and Results Chevron down icon Chevron up icon
Social Network Analysis Chevron down icon Chevron up icon
Deep Learning Beyond the Basics Chevron down icon Chevron up icon
Spark for Big Data Chevron down icon Chevron up icon
Strengthen Your Python Foundations Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(2 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Enrique H. Apr 02, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Esta serie de Packt sobre ciencia de datos ha sido muy útil por su fácil lenguaje y ejercicios entendibles.
Amazon Verified review Amazon
Amidu Mac Morrison Mar 17, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great product that worth the price.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.