Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala Machine Learning Projects

You're reading from   Scala Machine Learning Projects Build real-world machine learning and deep learning projects with Scala

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781788479042
Length 470 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Analyzing Insurance Severity Claims FREE CHAPTER 2. Analyzing and Predicting Telecommunication Churn 3. High Frequency Bitcoin Price Prediction from Historical and Live Data 4. Population-Scale Clustering and Ethnicity Prediction 5. Topic Modeling - A Better Insight into Large-Scale Texts 6. Developing Model-based Movie Recommendation Engines 7. Options Trading Using Q-learning and Scala Play Framework 8. Clients Subscription Assessment for Bank Telemarketing using Deep Neural Networks 9. Fraud Analytics Using Autoencoders and Anomaly Detection 10. Human Activity Recognition using Recurrent Neural Networks 11. Image Classification using Convolutional Neural Networks 12. Other Books You May Enjoy

Summary

In this chapter, we have seen how to develop a predictive model for analyzing insurance severity claims using some of the most widely used regression algorithms. We started with simple LR. Then we saw how we can improve performance using a GBT regressor. Then we experienced improved performance using ensemble techniques, such as the Random Forest regressor. Finally, we looked at performance comparative analysis between these models and chose the best model to deploy for production-ready environment.

In the next chapter, we will look at a new end-to-end project called Analyzing and Predicting Telecommunication Churn. Churn prediction is essential for businesses as it helps you detect customers who are likely to cancel a subscription, product, or service. It also minimizes customer defection. It does so by predicting which customers are more likely to cancel a subscription to a service.

 

You have been reading a chapter from
Scala Machine Learning Projects
Published in: Jan 2018
Publisher: Packt
ISBN-13: 9781788479042
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image