Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning for Genomics

You're reading from   Deep Learning for Genomics Data-driven approaches for genomics applications in life sciences and biotechnology

Arrow left icon
Product type Paperback
Published in Nov 2022
Publisher Packt
ISBN-13 9781804615447
Length 270 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Upendra Kumar Devisetty Upendra Kumar Devisetty
Author Profile Icon Upendra Kumar Devisetty
Upendra Kumar Devisetty
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1 – Machine Learning in Genomics
2. Chapter 1: Introducing Machine Learning for Genomics FREE CHAPTER 3. Chapter 2: Genomics Data Analysis 4. Chapter 3: Machine Learning Methods for Genomic Applications 5. Part 2 – Deep Learning for Genomic Applications
6. Chapter 4: Deep Learning for Genomics 7. Chapter 5: Introducing Convolutional Neural Networks for Genomics 8. Chapter 6: Recurrent Neural Networks in Genomics 9. Chapter 7: Unsupervised Deep Learning with Autoencoders 10. Chapter 8: GANs for Improving Models in Genomics 11. Part 3 – Operationalizing models
12. Chapter 9: Building and Tuning Deep Learning Models 13. Chapter 10: Model Interpretability in Genomics 14. Chapter 11: Model Deployment and Monitoring 15. Chapter 12: Challenges, Pitfalls, and Best Practices for Deep Learning in Genomics 16. Index 17. Other Books You May Enjoy

Use case – Model interpretability for genomics

In this hands-on exercise section, we will build a similar convolutional NN (CNN) model that we built in Chapter 9, Building and Tuning Deep Learning Models, but unlike in Chapter 9, here we will use a simulated dataset of DNA sequences of length 50 bases (whereas in Chapter 9, we have DNA sequence of length 101 bases). In addition, the binding sites in this example are not just for Transcription Factors (TFs) but any protein. The labels are designated as 0 and 1, corresponding to positive and negative binding sites (0 = no binding site and 1 = binding site).

The goal of this is to train a CNN model to predict the DNA binding site of the protein and visualize it in the predictions. Since these are artificial sequences, we have injected the AAAGAGGAAGTT motif into the positive sequence, but don’t worry—the CNN doesn’t know that.

Data collection

For this hands-on tutorial, we will use the simulated data...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image