Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Go Design Patterns

You're reading from   Go Design Patterns Best practices in software development and CSP

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786466204
Length 402 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Mario Castro Contreras Mario Castro Contreras
Author Profile Icon Mario Castro Contreras
Mario Castro Contreras
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Ready... Steady... Go! FREE CHAPTER 2. Creational Patterns - Singleton, Builder, Factory, Prototype, and Abstract Factory Design Patterns 3. Structural Patterns - Composite, Adapter, and Bridge Design Patterns 4. Structural Patterns - Proxy, Facade, Decorator, and Flyweight Design Patterns 5. Behavioral Patterns - Strategy, Chain of Responsibility, and Command Design Patterns 6. Behavioral Patterns - Template, Memento, and Interpreter Design Patterns 7. Behavioral Patterns - Visitor, State, Mediator, and Observer Design Patterns 8. Introduction to Gos Concurrency 9. Concurrency Patterns - Barrier, Future, and Pipeline Design Patterns 10. Concurrency Patterns - Workers Pool and Publish/Subscriber Design Patterns

Variables and constants

Variables are spaces in computer's memory to store values that can be modified during the execution of the program. Variables and constants have a type like the ones described in preceding text. Although, you don't need to explicitly write the type of them (although you can do it). This property to avoid explicit type declaration is what is called Inferred types. For example:

    //Explicitly declaring a "string" variable 
    var explicit string = "Hello, I'm a explicitly declared variable" 

Here we are declaring a variable (with the keyword var) called explicit of string type. At the same time, we are defining the value to Hello World!.

    //Implicitly declaring a "string". Type inferred 
inferred := ", I'm an inferred variable " 

But here we are doing exactly the same thing. We have avoided the var keyword and the string type declaration. Internally, Go's compiler will infer (guess) the type of the variable to a string type. This way you have to write much less code for each variable definition.

The following lines use the reflect package to gather information about a variable. We are using it to print the type of (the TypeOf variable in the code) of both variables:

    fmt.Println("Variable 'explicit' is of type:", 
        reflect.TypeOf(explicit)) 
    fmt.Println("Variable 'inferred' is of type:", 
        reflect.TypeOf(inferred)) 

When we run the program, the result is the following:

$ go run main.go
Hello, I'm a explicitly declared variable
Hello, I'm an inferred variable
Variable 'explicit' is of type: string
Variable 'inferred' is of type: string

As we expected, the compiler has inferred the type of the implicit variable to string too. Both have written the expected output to the console.

You have been reading a chapter from
Go Design Patterns
Published in: Feb 2017
Publisher: Packt
ISBN-13: 9781786466204
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image