Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Graph Data Science with Neo4j

You're reading from   Graph Data Science with Neo4j Learn how to use Neo4j 5 with Graph Data Science library 2.0 and its Python driver for your project

Arrow left icon
Product type Paperback
Published in Jan 2023
Publisher Packt
ISBN-13 9781804612743
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Estelle Scifo Estelle Scifo
Author Profile Icon Estelle Scifo
Estelle Scifo
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1 – Creating Graph Data in Neo4j
2. Chapter 1: Introducing and Installing Neo4j FREE CHAPTER 3. Chapter 2: Importing Data into Neo4j to Build a Knowledge Graph 4. Part 2 – Exploring and Characterizing Graph Data with Neo4j
5. Chapter 3: Characterizing a Graph Dataset 6. Chapter 4: Using Graph Algorithms to Characterize a Graph Dataset 7. Chapter 5: Visualizing Graph Data 8. Part 3 – Making Predictions on a Graph
9. Chapter 6: Building a Machine Learning Model with Graph Features 10. Chapter 7: Automatically Extracting Features with Graph Embeddings for Machine Learning 11. Chapter 8: Building a GDS Pipeline for Node Classification Model Training 12. Chapter 9: Predicting Future Edges 13. Chapter 10: Writing Your Custom Graph Algorithms with the Pregel API in Java 14. Index 15. Other Books You May Enjoy

Exercises

To make sure you understand the topics covered in this chapter before moving on to the next one, you are encouraged to think about the following:

  1. What is the advantage of a MERGE statement over CREATE?
  2. Can raw Cypher parse JSON data? What tool should you use for that?
  3. Practice! Using the Netflix dataset, set the movie’s genres contained in the listed_in column in the CSV dataset (assume Movies has already been imported).
  4. Practice! Using the Netflix JSON dataset, write a Cypher query to import actors (assume Movies has already been imported).
  5. Knowing that a given user – let’s call her Alice – watched the movie named Confessions of an Invisible Girl, what other Netflix content can we recommend to Alice?
  6. Practice! Refine the SPARQL query we’ve built to make sure the person is an actor or movie director.

Help: You can use Robert Cullen as an example.

The answers are provided at the end of this book.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image