Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Ensemble Machine Learning Cookbook

You're reading from   Ensemble Machine Learning Cookbook Over 35 practical recipes to explore ensemble machine learning techniques using Python

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789136609
Length 336 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Vijayalakshmi Natarajan Vijayalakshmi Natarajan
Author Profile Icon Vijayalakshmi Natarajan
Vijayalakshmi Natarajan
Dipayan Sarkar Dipayan Sarkar
Author Profile Icon Dipayan Sarkar
Dipayan Sarkar
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Get Closer to Your Data FREE CHAPTER 2. Getting Started with Ensemble Machine Learning 3. Resampling Methods 4. Statistical and Machine Learning Algorithms 5. Bag the Models with Bagging 6. When in Doubt, Use Random Forests 7. Boosting Model Performance with Boosting 8. Blend It with Stacking 9. Homogeneous Ensembles Using Keras 10. Heterogeneous Ensemble Classifiers Using H2O 11. Heterogeneous Ensemble for Text Classification Using NLP 12. Homogenous Ensemble for Multiclass Classification Using Keras 13. Other Books You May Enjoy

Implementing stacked generalization for campaign outcome prediction using H2O

H2O is an open source platform for building machine learning and predictive analytics models. The algorithms are written on H2O's distributed map-reduce framework. With H2O, the data is distributed across nodes, read in parallel, and stored in the memory in a compressed manner. This makes H2O extremely fast.

H2O's stacked ensemble method is an ensemble machine learning algorithm for supervised problems that finds the optimal combination of a collection of predictive algorithms using stacking. H2O's stacked ensemble supports regression, binary classification, and multiclass classification.

In this example, we'll take a look at how to use H2O's stacked ensemble to build a stacking model. We'll use the bank marketing dataset which is available in the Github.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image