Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Extending and Modifying LAMMPS Writing Your Own Source Code
Extending and Modifying LAMMPS Writing Your Own Source Code

Extending and Modifying LAMMPS Writing Your Own Source Code: A pragmatic guide to extending LAMMPS as per custom simulation requirements

eBook
€22.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Extending and Modifying LAMMPS Writing Your Own Source Code

Chapter 1: MD Theory and Simulation Practices

This chapter introduces the theory behind molecular dynamics (MD) and some common simulation practices. Starting from Newton's laws, we outline the physics behind the dynamics of point particles and rigid bodies, discuss iterative updating and the relevance of temperature, and end by listing computational practices.

In this chapter, we will cover the follow topics:

  • Introducing MD theory
  • Understanding the dynamics of point particles
  • Performing iterative updates using the Velocity Verlet algorithm
  • Understanding rotational motion
  • Examining temperature and velocity distribution of particles
  • Implementing MD simulation practices including cutoff, periodic boundaries, and neighbor lists

By the end of this chapter, you will have grasped an understanding of the theoretical fundamentals implemented in MD software.

Technical requirements

Introducing MD theory

MD is based on simulating individual particle trajectories over a desired time period to analyze the time evolution of an entire system of particles in a solid, liquid, or gaseous state. Each particle (usually an atom) is allowed to traverse in space as determined by Newton's laws of classical dynamics, where the atomic positions, velocities, and accelerations at one point in time are used to calculate the corresponding kinematics quantities at a different point in time. This process is repeated over a sufficiently long-time interval for every atom in a system, and the final configuration of the atoms indicates the time evolution of the system over the said time interval.

Typical MD simulations are limited to the study of atomistic systems consisting of atoms in the range of to , occupying a simulation box with a length in the order of nanometers, over a regular timescale of nanoseconds. MD simulations of such microscopic systems are relevant when the systems are able to represent the time evolution of corresponding macroscopic systems.

The theory behind MD is described briefly in the following sections. For a more detailed understanding, you are advised to refer to the dedicated literature on MD theory (Computer Simulation of Liquids by Michael P. Allen and Dominic J. Tildesley, and Understanding Molecular Simulation by Daan Frenkel and Berend Smit).

Understanding the dynamics of point particles

The trajectory of a point particle over time t is calculated from its mass m and net force using Newton's equation, as illustrated here:

is determined from the sum of all forces acting on the particle. In a system of interacting particles, the force acting between one pair of particles can be determined from the gradient of the potential energy function . Here, is the displacement vector that points to the particle for which we are calculating (using the following equation) and originates from the other particle in the pair (shown in Figure 1.1):

This gives us the three components of . The (x) force component is given as follows:

The (y) force component is calculated by the following formula:

The (z) force component is given by the following formula:

Here, is the distance between the pair of particles. By Newton's third law, it follows that the force components acting on the other particle in the pair have the same magnitudes, with the opposite sign.

The following diagram illustrates this concept, using two particles interacting via a 12-6 Lennard-Jones potential of the form , where represents the well depth and represents the position at which the potential is zero:

Figure 1.1 – Two particles in 1D interact via a Lennard-Jones potential

Figure 1.1 – Two particles in 1D interact via a Lennard-Jones potential

In this diagram, if we want to calculate the force from particle 2 (located at ) acting on particle 1 (located at ), then we use . Subsequently, the reaction force acting on particle 2 is given by .

Since potential energy functions are commonly expressed as functions of r, the expressions we saw earlier make it more convenient to calculate the force components. The sum of forces acting on a single particle by its interaction with all particles in the system gives the net force, as illustrated here:

Altogether, we obtain three equations to solve for , and . The x(t) equation is given as follows:

The y(t) equation is given by the following formula:

The z(t) equation is given by the following formula:

These values are used to generate the complete trajectory of the particle over a desired time interval. This process is repeated for all particles in the system to yield the complete system time evolution in the same time interval.

Performing iterative updates using the Velocity Verlet algorithm

As particles move in a system over time, the separation between each pair of particles changes accordingly, resulting in a change of the derivatives described in the previous section—that is, the force becomes time-dependent. Therefore, the trajectory is updated over a small increment of time called the timestep , and by iteratively updating the trajectory over a large number of timesteps, a complete trajectory can be obtained.

The purpose of keeping the timestep small is to ensure that the particles do not undergo drastic changes in position and therefore conserve energy in the system. For atomic masses, especially in the presence of forces from molecular bonds, angles, and dihedrals, a timestep of approximately 1 femtosecond is typically employed.

An advantage of using a small timestep is that the net force acting on a particle can be approximated to remain constant in the duration of the timestep. Therefore, the equations of motion that iteratively update the trajectory at timestep increments become the following:

Here, represents the velocity vector of the particle, and its components are iteratively updated by the following:

Here, the terms within the [ ] represent the average acceleration in each dimension, calculated using the accelerations at time t and the following iteration, . This is known as the Velocity Verlet algorithm, which considerably reduces errors over a long simulation period as compared to algorithms that use the acceleration at a single point in time (for example, the Euler algorithm). Furthermore, the Velocity Verlet algorithm is able to conserve energy and momentum within rounding errors with a sufficiently small timestep, unlike the Euler algorithm, which can lead to an indefinite increase in energy over time.

In effect, the position and velocity of each particle are tabulated at each iteration, as illustrated in the following table:

Table 1.1 – Table showing sequence of iterative update of position and velocity vectors of each particle

Table 1.1 – Table showing sequence of iterative update of position and velocity vectors of each particle

This table shows the sequence of iterative update of point particles that undergo a linear motion without any rotational component. In the case of a non-point object such as a rigid body, both linear and rotational motion must be incorporated for a proper treatment of its dynamics. Similar to linear motion, rotational motion of rigid bodies can be iteratively updated using a similar algorithm, as discussed next.

Understanding rotational motion

Rigid bodies are often used to represent molecules with inactive vibrational degrees of freedom. In a rigid body, the locations of all constituent atoms are frozen with respect to the rigid-body coordinates. The intramolecular forces from bonds, angles, dihedrals, and impropers are assumed not to create any distortion of the rigid body. Therefore, for the purposes of MD, all intramolecular forces in a rigid body can be disregarded. Any force exerted on any constituent atom in a rigid body acts on the entire rigid body. In addition to changing its linear velocity, this force can create a torque on the rigid body and change its angular momentum and angular velocity. The total force on a rigid body composed of N particles is calculated using the following formula:

Using the displacement vector of particle i measured from the center of mass of the rigid body as the origin, the torque of the rigid body is calculated by the following formula:

The angular momentum of the rigid body is obtained from the time-integration of using the Velocity Verlet algorithm, as follows:

The angular velocity of the rigid body is obtained by a two-step procedure from using an intermediate step at a half-timestep and a second step at a full-timestep , which will be described in more detail when analyzing the dynamics of rigid bodies in Chapter 7, Understanding Fixes. The procedure is illustrated here:

Here, is the moment of inertia tensor of the rigid body.

For a system of point particles or rigid bodies, the average kinetic energy and the average speed or angular speed are determined by the system temperature. Therefore, controlling the temperature adequately is often essential when simulating a molecular system. The next section discusses the features of a molecular simulation determined by the temperature.

Examining temperature and velocity distribution of particles

A system at thermal equilibrium at a constant temperature T is characterized by its Maxwell-Boltzmann velocity distribution. According to this distribution, the probability distribution of velocities in a single direction i (which can be x, y, z) of a system of particles of mass m each is given by the Gaussian function, illustrated here in Figure 1.2:

Figure 1.2 – The Maxwell-Boltzmann velocity distributions (left) and speed distributions (right)

Figure 1.2 – The Maxwell-Boltzmann velocity distributions (left) and speed distributions (right)

The preceding graph is plotted for the same system at three different temperatures .

The corresponding functional form that depends on the mass and temperature is shown here:

Here, is the Boltzmann constant. This distribution has a mean of and a standard deviation of . The shape of the Gaussian curve is determined by the ratio of . The velocity distribution of the velocity vector is given by the following formula:

In spherical coordinates, this distribution can be written in terms of the speed , as follows:

This is the Maxwell-Boltzmann speed distribution, also known as a Rayleigh distribution. The shape of the speed distribution changes with temperature, as shown in Figure 1.2, and the peak speed increases with temperature. The velocity distributions are wider at higher temperatures, and the speed distributions show larger peak speeds at higher temperatures. An algorithm that controls temperature in a molecular simulation must account for the preceding features regarding particle velocities.

So far, concepts that dictate the operation of an MD simulation have been discussed. These concepts are implemented in a computational environment through codes that will be discussed in later chapters. In the next section, we will discuss related computational concepts that are commonly encountered in MD simulations and that are prevalently used to enhance simulation performance.

Implementing MD simulation practices

In order to implement MD simulations that are computationally efficient and model realistic atomic systems, a number of standard simulation practices are employed. A user is likely to find these practices employed in typical Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) scripts and it is therefore helpful to be familiar with these concepts before delving into the LAMMPS source code. In this section, we will briefly discuss some of these practices (details are available in the MD textbooks referred to in the Introducing MD theory section).

Pair-potential cutoff

If it is desired that a potential reaches exactly zero at the cutoff, an offset () can be employed by calculating the potential at the cutoff , that is . This offset can then be subtracted from the original potential to guarantee a zero value at the cutoff, that is . Altogether, the potential with the offset changes the value of the system potential, but does not alter the forces because is a constant term that produces zero force contribution upon differentiating.

Most pair-potential functions are defined to asymptotically approach zero potential— for example, the Lennard-Jones function approaches zero as the inverse-sixth power of separation. For particles located far from each other, it implies that there exists some small but non-zero potential between them, which may be negligible in a simulation context but still adds numerical computation overhead.

Therefore, a common practice is to employ a cutoff distance for pair potentials, beyond which the interaction is assumed to be zero. The cutoff is chosen at a separation where the potential value is sufficiently small so as not to create significant errors by discounting interaction with neighbors located beyond the cutoff. During a simulation run, only the neighbors located within the cutoff radius of a particle are considered for force or potential calculations, thereby reducing computation time.

Periodic boundary conditions

Simulated systems often consist of a small cell that is representative of a larger system—for example, nanocrystal representation of a metal lattice. In such systems, it can often be assumed that the entire system is made up of many replications of the simulation box. In 1912, Born and von Karman came up with the implementation of periodic boundary conditions that can simulate a continuous replicated system starting from a simulation box.

Each wall (that is, boundary) of the simulation box is assumed to be adjacent to an identical simulation box containing identical atoms at identical positions. In effect, each wall of the box leads to a replica of the simulation box, containing images of the same atoms as in the simulation box. At every iteration, as the atom positions in the simulation box are updated, the image atoms in the replicas are accordingly updated. The following diagram shows this simulation box:

Figure 1.3 – A 2D simulation box without (top) and with (bottom) periodic boundaries

Figure 1.3 – A 2D simulation box without (top) and with (bottom) periodic boundaries

In this diagram, we see the following:

  • Top: A snapshot of a 2D simulation box consisting of four particles (indexed from 1 to 4) without periodic boundaries.
  • Bottom: The same simulation box with periodic boundaries in all directions produces 8 replicas (26 replicas in 3D) containing image atoms (dashed circles). At every iteration, all replicas are identically updated by replicating the particles in the central simulation box.

This way, enclosing wall boundaries are eliminated, and any atom that exits the simulation box by passing through a wall will automatically re-enter through the opposite wall, thus conserving the number of atoms and modeling continuous motion of atoms. Furthermore, the atoms in the simulation box are permitted to interact with the image atoms located in the replicas, ensuring that atoms located near to the walls are not considered as fringe atoms with few neighbors only because of their remoteness from the box center.

In Figure 1.3, in the absence of periodic boundaries, particle 3 at the top-right corner is observed to be located far from particles 1 and 4, and would undergo reduced or zero interactions with these particles. By contrast, when periodic boundaries are implemented, particle 3 is located considerably closer to images of particles 1 and 4.

Subsequently, particle 3 is able to interact with other particles located in all directions around itself as if it were contained in a continuous, unbounded simulation box. At the same time, consistency of interaction requires that particle 3 interacts with either an image or with the original particle in the simulation box, but not both together, and it is accomplished by setting the side lengths of the simulation box to be at least double the pair-potential cutoff distance between atoms. This requirement is known as the minimum image convention, which guarantees that pair-potential interactions are not double-counted.

Long-range electrostatic potentials decay considerably slower than many other interactions (as inverse of the separation) and would therefore require disproportionately long cutoffs and correspondingly large simulation boxes to model with a traditional pair potential. To circumvent this problem, electrostatic interactions with image atoms are summed up by an Ewald summation (or a related particle-mesh method) that divides the calculation to a real-space component and a reciprocal-space component. This way, a cutoff is not required, but periodic boundaries are necessary to ensure sum convergence.

When an atom exits a simulation box and its image enters from the opposite side of the box, the atom coordinates can extend beyond the simulation box coordinates. This is accounted for using the concept of wrapped and unwrapped coordinates, where unwrapped coordinates represent the unadjusted atom coordinates and wrapped coordinates represent the coordinates adjusted by resetting to the coordinates of the re-entry wall.

In LAMMPS, trajectory output files may include an image flag to keep track of wrapped and unwrapped coordinates. When an atom exits the simulation box along the positive direction in any dimension, the image flag corresponding to this axis would increment by one. Accordingly, the image flag decrements by one if the atom exits along the negative direction. Thus, the image flag of an atom multiplied by the corresponding simulation box side length can be used to convert from wrapped to unwrapped coordinates.

Neighbor lists

An atom only interacts with its neighbors located within a cutoff radius, and these neighbors are identified by calculating their distances from the atom in consideration. For a system of N atoms, this could lead to calculating the distance between each of the pairs of atoms. To reduce the computation overhead, for every atom a subset of neighbors is selected into a neighbor list (suggested by Verlet in 1967), and only these short-listed neighbors are used to calculate the interactions with the atom.

At the beginning of a simulation, a neighbor list is built for every interacting atom in the system by tagging all its neighboring atoms that lie within its cutoff or within a short buffer width, known as the skin width (shown in Figure 1.4). If the atoms are not traveling at extreme speeds, only the atoms located within the cutoff or the skin (that is, the neighbor-list members) at a certain iteration can be expected to lie inside the cutoff radius in the next iteration, and it can be expected that no atom previously located outside the skin will be able to cross inside the cutoff radius in the space of one iteration.

This way, the neighbor list excludes atoms that are located sufficiently far by reusing information from the preceding iteration, and this therefore reduces computation time in calculating neighbor distances. The process is illustrated in the following diagram:

Figure 1.4 – Illustration of the radial cutoff distance  and 
the skin width  of a central atom (black dot)

Figure 1.4 – Illustration of the radial cutoff distance and the skin width of a central atom (black dot)

At any timestep, the atoms that are located inside are included in the neighbor list of the central atom, whereas only the atoms located inside interact with the central atom. At the next iteration, only the atoms tagged in the neighbor list are considered when identifying atoms that can interact with the central atom, and the neighbor list may be rebuilt depending on the displacements of the atoms.

Generally, the neighbor lists do not have to be rebuilt at every iteration, and the interval between rebuilding can be defined by the user. Also, a common practice is to rebuild only when an atom has traveled more than half the skin width since the previous neighbor-list build. It also implies that a larger skin width requires less frequent neighbor-list builds, at the cost of including a greater number of neighbors per list at every iteration.

The skin width can be specified independently of the cutoff distance and is generally chosen according to timestep and expected particle velocities. At the lower limit, the skin width should be double the maximum displacement expected of a particle in an iteration. In LAMMPS, if an atom is able to cross the skin width in one iteration, the associated neighbor lists experience a dangerous build whereby the loss of the atom can lead to errors in force calculations and violation of energy conservation. If a dangerous build is detected, the neighbor list needs to be rebuilt to rectify this.

When a neighbor list is used to calculate the interaction force between a pair of atoms, the two atoms in the pair can be assigned equal and opposite forces by Newton's third law. This equivalency can be enabled using a full-neighbor list, whereas it can be disabled by using a half-neighbor list. While a full-neighbor list reduces computation cost, half-neighbor lists may be preferred in simulations where equal and opposite forces are not applicable.

Processor communication

Modern parallel computers have two main forms: shared-memory machines, where multiple processors (often called cores) access the same memory; and distributed-memory machines, where a processor (often called a node) cannot access the memory designated to another processor. Modern high-performance computing facilities are all based on a hybrid architecture. A node consists of multiple cores, and many nodes combine to form a supercomputer. This architecture also leads to an issue of distributing the workload and allocating tasks between nodes and cores.

In the context of MD, one strategy that addresses the task allocation problem is spatial decomposition, which divides the simulation box into equal sections and assigns atoms located in each section to a different core, as shown here:

Figure 1.5 – (Left) A single processing core calculating the trajectory of every atom 
in the simulation box. (Right) The simulation box is divided into domains, 
and the atoms in each domain are assigned to a different core

Figure 1.5 – (Left) A single processing core calculating the trajectory of every atom in the simulation box. (Right) The simulation box is divided into domains, and the atoms in each domain are assigned to a different core

The domains in the preceding diagram are spatially decomposed by volume. Copies of atoms, known as ghost atoms, are exchanged between processors to account for interactions between atoms located on different cores. Each core calculates the interactions of atoms assigned to it in parallel and thereby increases the overall simulation speed.

To account for interactions between atoms located on different cores, each core builds its domain with a shell that accommodates particles located at the edges of a domain, and exchanges copies of particles (known as ghost atoms) with other cores, as illustrated in the following diagram:

Figure 1.6 – A core domain showing its shell (dashed box) and 
ghost atoms shared with a neighboring domain

Figure 1.6 – A core domain showing its shell (dashed box) and ghost atoms shared with a neighboring domain

There are two stages of communication between cores involved, detailed here:

  • In the first stage, the shell exchanges the ghost-atom coordinates with neighboring cores to register the particles that can interact with the particles contained in the domain. The ghost atoms in these shells are essentially images of atoms in other domains.
  • In the second stage, the updated atom positions at the following iteration are used to determine whether any atom has moved to a different domain, and if so, the atom coordinates and kinematics information are communicated to the appropriate cores. After this step, the particles in the shell are deleted from the memory.

This parallel mechanism demonstrates that communication time between cores multiplies as the number of cores increases. Due to memory and bandwidth limits, parallelization cannot achieve the ideal optimization of , where N is the number of atoms and P is the number of processors, and leads to a sub-linear speedup. Therefore, for a given simulation system an increasing number of cores eventually reduces efficiency, and there exists an optimum number of cores that delivers the best performance.

Summary

The basics of MD and common MD simulation practices have been laid out in this chapter to help elucidate the physics and mathematics implemented in MD codes. When the LAMMPS source code is discussed in later chapters, the concepts discussed here will be referenced and explicated in terms of the source code.

In the next chapter, you will be introduced to LAMMPS input script and the execution of MD simulation features through LAMMPS commands, and the repository of standard LAMMPS codes.

Questions

  1. Using a simulation box having periodic boundaries in all directions, how can a metal slab consisting of a few layers be generated such that the slab extends indefinitely in the xy-plane but accommodates a long vacuum above and below the slab?
  2. How should the optimum skin width compare between a solid at a low temperature versus a gas at a high temperature?
  3. In a large simulation box containing a uniform density of solute and solvent molecules, how would the pair-potential energy of a solute molecule at the center of the box change with periodic or non-periodic boundaries (assuming that the pair-potential cutoff is shorter than half of any of the simulation box side lengths)?
  4. Given a uniform-metal nanocrystal, how can subdomains and ghost atoms be established?
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Understand the structure of the LAMMPS source code
  • Implement custom features in the LAMMPS source code to meet your research needs
  • Run example simulations involving forces, thermostats, and pair potentials based on implemented features

Description

LAMMPS is one of the most widely used tools for running simulations for research in molecular dynamics. While the tool itself is fairly easy to use, more often than not you’ll need to customize it to meet your specific simulation requirements. Extending and Modifying LAMMPS bridges this learning gap and helps you achieve this by writing custom code to add new features to LAMMPS source code. Written by ardent supporters of LAMMPS, this practical guide will enable you to extend the capabilities of LAMMPS with the help of step-by-step explanations of essential concepts, practical examples, and self-assessment questions. This LAMMPS book provides a hands-on approach to implementing associated methodologies that will get you up and running and productive in no time. You’ll begin with a short introduction to the internal mechanisms of LAMMPS, and gradually transition to an overview of the source code along with a tutorial on modifying it. As you advance, you’ll understand the structure, syntax, and organization of LAMMPS source code, and be able to write your own source code extensions to LAMMPS that implement features beyond the ones available in standard downloadable versions. By the end of this book, you’ll have learned how to add your own extensions and modifications to the LAMMPS source code that can implement features that suit your simulation requirements.

Who is this book for?

This book is for students, faculty members, and researchers who are currently using LAMMPS or considering switching to LAMMPS, have a basic knowledge of how to use LAMMPS, and are looking to extend LAMMPS source code for research purposes. This book is not a tutorial on using LAMMPS or writing LAMMPS scripts, and it is assumed that the reader is comfortable with the basic LAMMPS syntax. The book is geared toward users with little to no experience in source code editing. Familiarity with C++ programming is helpful but not necessary.

What you will learn

  • Identify how LAMMPS input script commands are parsed within the source code
  • Understand the architecture of the source code
  • Relate source code elements to simulated quantities
  • Learn how stored quantities are accessed within the source code
  • Explore the mechanisms controlling pair styles, computes, and fixes
  • Modify the source code to implement custom features in LAMMPS

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Feb 19, 2021
Length: 394 pages
Edition : 1st
Language : English
ISBN-13 : 9781800567238
Vendor :
Google
Category :
Languages :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Feb 19, 2021
Length: 394 pages
Edition : 1st
Language : English
ISBN-13 : 9781800567238
Vendor :
Google
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 146.97
Visual Studio 2019 Tricks and Techniques
€32.99
Extending and Modifying LAMMPS Writing Your Own Source Code
€41.99
Dancing with Qubits
€71.99
Total 146.97 Stars icon
Banner background image

Table of Contents

16 Chapters
Section 1: Getting Started with LAMMPS Chevron down icon Chevron up icon
Chapter 1: MD Theory and Simulation Practices Chevron down icon Chevron up icon
Chapter 2: LAMMPS Syntax and Source Code Hierarchy Chevron down icon Chevron up icon
Section 2: Understanding the Source Code Structure Chevron down icon Chevron up icon
Chapter 3: Source Code Structure and Stages of Execution Chevron down icon Chevron up icon
Chapter 4: Accessing Information by Variables, Arrays, and Methods Chevron down icon Chevron up icon
Chapter 5: Understanding Pair Styles Chevron down icon Chevron up icon
Chapter 6: Understanding Computes Chevron down icon Chevron up icon
Chapter 7: Understanding Fixes Chevron down icon Chevron up icon
Chapter 8: Exploring Supporting Classes Chevron down icon Chevron up icon
Section 3: Modifying the Source Code Chevron down icon Chevron up icon
Chapter 9: Modifying Pair Potentials Chevron down icon Chevron up icon
Chapter 10: Modifying Force Applications Chevron down icon Chevron up icon
Chapter 11: Modifying Thermostats Chevron down icon Chevron up icon
Assessments Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.6
(7 Ratings)
5 star 57.1%
4 star 42.9%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Cindy Mar 09, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
In general, I think this book could serve as a good guide for starters to get familiar with molecular dynamics conceptions and LAMMPS, a powerful MD simulation software, along with its source command.What I like about this book:This book provides C++ source codes with detailed explanations, and explains how the source code works when LAMMPS commands are deployed. The authors also explained the hierarchy of LAMMPS source code. With all the screenshots and examples, this book is quite straightforward to understand, and is very helpful to students to understand how to program the formulas into code, especially for those who does not have much coding experience. You could get some hand-on experience by following the illustrations, even if you have never used C++ before.What I feel uncertain about this book:Given that readers of this book may be students who major in STEM programs and are likely to be pursuing advanced degrees in this field, the physics seems to be quite simple for readers. It would be better if there are more examples with complicated situations (multi-body potential, for instance).
Amazon Verified review Amazon
Pablo Piaggi Feb 22, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is an excellent guide for beginner developers that wish to learn how to modify LAMMPS and is also a good reference for more experienced developers. The explanations are thorough and there are many examples.
Amazon Verified review Amazon
Deepika Mar 06, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Highly recommend for MD LAMMPS users to understand each and every line of program, physics behind and enhance the lammps calculation capabilities according to need.
Amazon Verified review Amazon
Betim Mar 31, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
It is an extremely helpful book for everybody who wants to implement new things in the LAMMPS code
Amazon Verified review Amazon
Amazon Customer Feb 21, 2021
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
This book is a bit of an odd-ball, but not in a negative sense. While there are good books that focus extensively on molecular dynamics theory that in addition sometimes provide small snippets of example code, this book is the first that I know of that dedicates itself, in detail, to how the internals of such an engine work and on how to modify it to your own needs. Because of its design, LAMMPS is especially well-suited for modifications and extensions by end users, so it is an obvious choice for this book.One down-side of this is that LAMMPS is always changing, sometimes quite extensively, so some parts of the book are likely to become out-dated at some point. For this reason, the authors choose to focus on the “stable” version of LAMMPS from March 3, 2020. Still, a lot of the skills obtained by going through this book should transfer well to later versions even if some of the details have changed, and for changes that occurred during the writing of this book the authors provide notes detailing the changes.It starts with a small chapter on the basics of molecular dynamics (MD) simulations where very briefly some concepts that appear in LAMMPS are explained, but for extensive treatment of the details the authors defer to the classical books by Computer Simulation of Liquids by Allen and Tildesley and Understanding Molecular Simulation by Frenkel and Smit. In short, they explain forces arising from a potential, updating positions and velocities with the velocity Verlet scheme and briefly explain rotational motion.They then discuss periodic boundary conditions and neighbor lists, which is pretty standard, but also explain the distributed memory parallelization through spatial decomposition.The second chapter of the first section is where the focus on LAMMPS really takes of. The authors introduce LAMMPS' scripting language, the structure of the source code and the hierarchy of the various classes. Most importantly, it highlights a selection of the special member functions that a lot of the LAMMPS classes (“styles”) possess that are called at specific steps of the time integration loop. These functions are important because virtually all LAMMPS functionality makes use of these functions to ensure that everything happens at the correct time.For some reason the chapter does not go into the compilation process itself, that is deferred to an appendix where it is explained in great detail. Perhaps this is done because the exact way to compile is subject to more change than the source code hierarchy itself.Chapter 4 explains how one can access various internal data structures that hold positions, velocities, forces, atom IDs, atom types, etc. It also explains how global and local atom IDs work, which is good because this can be a bit unintuitive for the uninitiated. Neighbor lists are discussed next, which are a requirement for calculating forces efficiently but are also very useful for any type of computation that requires information about which atoms are in proximity of the others, a prime being the computation of the radial distribution function.The various unit systems in LAMMPS are also explained, which is important because LAMMPS supports various unit systems (SI, Lennard-Jones, “metal”) whose reference units make sense for the system under consideration. For example, for simulations involving metals, energy expressed in electronvolts (eV) makes more sense than kcal/mol which is customary for biophysical simulations.This chapter lastly focuses on how the LAMMPS engine reads and parses input scripts, which is essential to know because all extensions to LAMMPS have to be invoked through the scripting language, and hence some parsing of these commands is required.At Chapters 5 to 8 we really dive deep into the inner workings of LAMMPS, and the authors explore in detail how pair styles (LAMMPS terminology for pairwise forces), compute styles (styles that compute physical quantities not necessarily related to the dynamics of the atoms themselves) and fix styles work.Fixes are classes that modify atom positions, velocities, forces, etc. to somehow modify the dynamics of the system. For example, the simple velocity Verlet time integrator is implemented as a fix, as is the Langevin thermostat, the SHAKE constraint algorithm, walls, etc. While at a first glance it seems somewhat strange to decouple time integration from the conceptual velocity Verlet loop of (update position –> calculate new forces –> update velocity), setting it up this way allows one to use a lot of different fixes together to create new functionality.The authors do a good job of thoroughly studying the pair styles, including memory allocation, initial setup, parsing of the lines from the input script and the actual force and energy computation. In particular, it is good that the authors refer back to the initial chapter because some of the internals in LAMMPS might be counter-intuitive at first (like the fact that the internal “fpair” variable has units of force per distance).While computes are conceptually similar or perhaps simpler than pair styles, one complication they have over pair styles is dealing with the distributed memory parallelization. A pair style only has to compute local forces and LAMMPS takes care of the proper communication between processors, but computes require some additional synchronization between processors by the programmer. Do not be intimidated though, often a couple of MPI_Allreduce suffice, and the authors walk you through it for compute styles for the total kinetic energy, collective interaction energies and forces between specified groups of atoms, the radial distribution function, and the heat flux. For more involved MPI-related information there is a dedicated appendix.Chapter 7 focuses on a handful of fix styles in increasing degrees of complexity, making sure to explain along the way the flag that indicates which member functions of the fixes need calling, starting from a fix that simply adds an external force to atoms to culminating in a time integration method for rigid bodies.In chapters 5 to 7, some of the styles explored made use of supporting classes, which are explored in more detail here.Section 3 gets to the heart of this book: Explaining how to modify LAMMPS to add new functionality. The examples they use are fairly simple so that one does not get lost into the details of what is being implemented and instead can focus on how it is implemented. The described methods naturally generalize to more complex functionality. The authors also go into detail about sanity checks to verify the implemented modifications. They describe in detail various custom fixes and pair styles to add custom forces, potentials and thermostats, such that they touch upon various kinds of different functionality. The selection the authors made should provide good starting points for most custom pair styles and/or fixes, so that one does not have to start from scratch.I think the book definitely achieves its goal of providing a very thorough description on how LAMMPS works and how to modify it to suit your own needs. While for small modifications it might be overkill, it will definitely help the reader form a much better understanding of how LAMMPS works and how to do things properly than by just copying a similar style and modifying it.I do have some criticisms not directly related to the content but that do detriment the quality of the book somewhat:The type-setting of equations is a little shoddy, with some stand-alone formulas having different font sizes.The code snippets and even some tables are screenshots which means that in the e-book, the text is not highlightable or selectable.Still, I would recommend the book to anyone that is serious about diving into LAMMPS to implement their own features.Full disclosure: I got a free ebook copy of this book from the publisher for review.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.