Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Intelligent Projects Using Python

You're reading from   Intelligent Projects Using Python 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788996921
Length 342 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Santanu Pattanayak Santanu Pattanayak
Author Profile Icon Santanu Pattanayak
Santanu Pattanayak
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Foundations of Artificial Intelligence Based Systems 2. Transfer Learning FREE CHAPTER 3. Neural Machine Translation 4. Style Transfer in Fashion Industry using GANs 5. Video Captioning Application 6. The Intelligent Recommender System 7. Mobile App for Movie Review Sentiment Analysis 8. Conversational AI Chatbots for Customer Service 9. Autonomous Self-Driving Car Through Reinforcement Learning 10. CAPTCHA from a Deep-Learning Perspective 11. Other Books You May Enjoy

Neural networks

Neural networks are machine learning models that are inspired by the human brain. They consist of neural processing units they are interconnected with one another in a hierarchical fashion. These neural processing units are called artificial neurons, and they perform the same function as axons in a human brain. In a human brain, dendrites receive input from neighboring neurons, and attenuate or magnify the input before transmitting it on to the soma of the neuron. In the soma of the neuron, these modified signals are added together and passed on to the axon of the neuron. If the input to the axon is over a specified threshold, then the signal is passed on to the dendrites of the neighboring neurons.

An artificial neuron loosely works perhaps on the same logic as that of a biological neuron. It receives input from neighboring neurons. The input is scaled by the input connections of the neurons and then added together. Finally, the summed input is passed through an activation function whose output is passed on to the neurons in the next layer.

A biological neuron and an artificial neuron are illustrated in the following diagrams for comparison:

Figure 1.2: Biological neuron

An artificial neuron are illustrated in the following diagram:

Figure 1.3: Artificial neuron

Now, let's look at the structure of an artificial neural network, as illustrated in the following diagram:

Figure 1.4: Artificial neural network

The input, x ∈ RN, passes through successive layers of neural units, arranged in a hierarchical fashion. Each neuron in a specific layer receives an input from the neurons of the preceding layers, attenuated or amplified by the weights of the connections between them. The weight, , corresponds to the weight connection between the ith neuron in layer l and the jth neuron in layer (l+1). Also, each neuron unit, i, in a specific layer, l, is accompanied by a bias, . The neural network predicts the output, , for the input vector, x ∈ RN. If the actual label of the data is y, where y takes continuous values, then the neuron network learns the weights and biases by minimizing the prediction error, . Of course, the error has to be minimized for all of the labeled data points: (xi, yi)∀i ∈ 1, 2, . . . m.

If we denote the set of weights and biases by one common vector, W, and the total error in the prediction is represented by C, then through the training process, the estimated W can be expressed as follows:

Also, the predicted output, , can be represented by a function of the input, x, parameterized by the weight vector, W, as follows:

Such a formula for predicting the continuous values of the output is called a regression problem.

For a two-class binary classification, cross-entropy loss is minimized instead of the squared error loss, and the network outputs the probability of the positive class instead of the output. The cross-entropy loss can be represented as follows:

Here, pi is the predicted probability of the output class, given the input x, and can be represented as a function of the input, x, parameterized by the weight vector, as follows:

In general, for multi-class classification problems (say, of n classes), the cross-entropy loss is given via the following:

Here, is the output label of the jth class, for the ith datapoint.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image