Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning Projects

You're reading from   Python Deep Learning Projects 9 projects demystifying neural network and deep learning models for building intelligent systems

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788997096
Length 472 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Rahul Kumar Rahul Kumar
Author Profile Icon Rahul Kumar
Rahul Kumar
Matthew Lamons Matthew Lamons
Author Profile Icon Matthew Lamons
Matthew Lamons
Abhishek Nagaraja Abhishek Nagaraja
Author Profile Icon Abhishek Nagaraja
Abhishek Nagaraja
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Building Deep Learning Environments FREE CHAPTER 2. Training NN for Prediction Using Regression 3. Word Representation Using word2vec 4. Building an NLP Pipeline for Building Chatbots 5. Sequence-to-Sequence Models for Building Chatbots 6. Generative Language Model for Content Creation 7. Building Speech Recognition with DeepSpeech2 8. Handwritten Digits Classification Using ConvNets 9. Object Detection Using OpenCV and TensorFlow 10. Building Face Recognition Using FaceNet 11. Automated Image Captioning 12. Pose Estimation on 3D models Using ConvNets 13. Image Translation Using GANs for Style Transfer 14. Develop an Autonomous Agent with Deep R Learning 15. Summary and Next Steps in Your Deep Learning Career 16. Other Books You May Enjoy

Generating music using a multi-layer LSTM

Our (hypothetical) creative agency client loves what we've done in how we can generate music lyrics. Now, they want us to create some music. We will be using multiple layers of LSTMs, as shown in the following diagram:

By now, we know that RNNs are good for sequential data, and we can also represent a music track as notes and chord sequences. In this paradigm, notes become data objects containing octave, offset, and pitch information. Chords become data container objects holding information for the combination of notes played at one time.

Pitch is the sound frequency of a note. Musicians represent notes with letter designations [A, B, C, D, E, F, G], with G being the lowest and A being the highest.

Octave
identifies the set of pitches used at any one time while playing an instrument.

Offset
identifies the location of a note in...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image