Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Python Workshop Second Edition

You're reading from   The Python Workshop Second Edition Write Python code to solve challenging real-world problems

Arrow left icon
Product type Paperback
Published in Nov 2022
Publisher Packt
ISBN-13 9781804610619
Length 600 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (5):
Arrow left icon
Mario Corchero Jiménez Mario Corchero Jiménez
Author Profile Icon Mario Corchero Jiménez
Mario Corchero Jiménez
Andrew Bird Andrew Bird
Author Profile Icon Andrew Bird
Andrew Bird
Corey Wade Corey Wade
Author Profile Icon Corey Wade
Corey Wade
Graham Lee Graham Lee
Author Profile Icon Graham Lee
Graham Lee
Dr. Lau Cher Han Dr. Lau Cher Han
Author Profile Icon Dr. Lau Cher Han
Dr. Lau Cher Han
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Chapter 1: Python Fundamentals – Math, Strings, Conditionals, and Loops 2. Chapter 2: Python Data Structures FREE CHAPTER 3. Chapter 3: Executing Python – Programs, Algorithms, and Functions 4. Chapter 4: Extending Python, Files, Errors, and Graphs 5. Chapter 5: Constructing Python – Classes and Methods 6. Chapter 6: The Standard Library 7. Chapter 7: Becoming Pythonic 8. Chapter 8: Software Development 9. Chapter 9: Practical Python – Advanced Topics 10. Chapter 10: Data Analytics with pandas and NumPy 11. Chapter 11: Machine Learning 12. Chapter 12: Deep Learning with Python 13. Chapter 13: The Evolution of Python – Discovering New Python Features 14. Index 15. Other Books You May Enjoy

Testing data with cross-validation

In cross-validation, also known as CV, the training data is split into five folds (any number will do, but five is standard). The ML algorithm is fit on one fold at a time and tested on the remaining data. The result is five different training and test sets that are all representative of the same data. The mean of the scores is usually taken as the accuracy of the model.

Note

For cross-validation, 5 folds is only one suggestion. Any natural number may be used, with 3 and 10 also being fairly common.

Cross-validation is a core tool for ML. Mean test scores on different folds are more reliable than one mean test score on the entire set, which we performed in the first exercise. When examining one test score, there is no way of knowing whether it is low or high. Five test scores give a better picture of the true accuracy of the model.

Cross-validation can be implemented in a variety of ways. A standard approach is to use cross_val_score,...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image