Summary
In this chapter, we drew your attention to two potential challenges that ML practitioners may face when training ML models: firstly, the challenge of reducing the overall model training time, especially when there is a large amount of training data; and secondly, the challenge of reducing the overall model training time when there are large models with millions and billions of trainable parameters.
We reviewed three specific strategies that can be used to address these challenges, namely the data parallel placement strategy, which distributes a large amount of training data across multiple worker resources to execute the model training process in parallel. Additionally, we also reviewed the model parallel placement strategy, which distributes a very large ML model across multiple GPU resources to offset trying to squeeze these large models into the available memory resources. Lastly, we also explored how both these strategies can be combined, using a hybrid methodology,...