Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with Keras

You're reading from   Deep Learning with Keras Implementing deep learning models and neural networks with the power of Python

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787128422
Length 318 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Neural Networks Foundations FREE CHAPTER 2. Keras Installation and API 3. Deep Learning with ConvNets 4. Generative Adversarial Networks and WaveNet 5. Word Embeddings 6. Recurrent Neural Network — RNN 7. Additional Deep Learning Models 8. AI Game Playing 9. Conclusion

word2vec


The word2vec group of models was created in 2013 by a team of researchers at Google led by Tomas Mikolov. The models are unsupervised, taking as input a large corpus of text and producing a vector space of words. The dimensionality of the word2vec embedding space is usually lower than the dimensionality of the one-hot embedding space, which is the size of the vocabulary. The embedding space is also more dense compared to the sparse embedding of the one-hot embedding space.

The two architectures for word2vec are as follows:

  • Continuous Bag Of Words (CBOW)
  • Skip-gram

In the CBOW architecture, the model predicts the current word given a window of surrounding words. In addition, the order of the context words does not influence the prediction (that is, the bag of words assumption). In the case of skip-gram architecture, the model predicts the surrounding words given the center word. According to the authors, CBOW is faster but skip-gram does a better job at predicting infrequent words.

An...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image