Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Generative AI Application Integration Patterns

You're reading from   Generative AI Application Integration Patterns Integrate large language models into your applications

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781835887608
Length 218 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Luis Lopez Soria Luis Lopez Soria
Author Profile Icon Luis Lopez Soria
Luis Lopez Soria
Juan Pablo Bustos Juan Pablo Bustos
Author Profile Icon Juan Pablo Bustos
Juan Pablo Bustos
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction to Generative AI Patterns FREE CHAPTER 2. Identifying Generative AI Use Cases 3. Designing Patterns for Interacting with Generative AI 4. Generative AI Batch and Real-Time Integration Patterns 5. Integration Pattern: Batch Metadata Extraction 6. Integration Pattern: Batch Summarization 7. Integration Pattern: Real-Time Intent Classification 8. Integration Pattern: Real-Time Retrieval Augmented Generation 9. Operationalizing Generative AI Integration Patterns 10. Embedding Responsible AI into Your GenAI Applications 11. Other Books You May Enjoy
12. Index

Inference

The inference step is where the magic happens – user inputs are actually run through the AI models, either running locally or in the cloud, to generate outputs. Seamlessly orchestrating this prediction stage requires some key technical capabilities.

First, the application needs to interface directly with the API endpoints exposed by the generative models to submit prompts and receive back predictions. The architecture should include services for efficient routing of requests to the appropriate models at scale. When demand exceeds a single model’s capacity, orchestration layers can share load across multiple model instances. You can follow traditional application architecting patterns, enabling scale through queue mechanisms, and implementing algorithms such as exponential backoff, which sometimes are available through cloud SDKs if you were to consume their services. It is always a good idea to evaluate common API consumption patterns and explore the tradeoffs...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image