Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
PostgreSQL Server Programming
PostgreSQL Server Programming

PostgreSQL Server Programming: Take your skills with PostgreSQL to a whole new level with this fascinating guide to server programming. A step by step approach with illuminating examples will educate you in the full range of possibilities.

eBook
R$80 R$245.99
Paperback
R$306.99
Subscription
Free Trial
Renews at R$50p/m
:

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

PostgreSQL Server Programming

Chapter 1. What Is a PostgreSQL Server?

If you think that a PostgreSQL server is just a storage system, and the only way to communicate with it is by executing SQL statements, you are limiting yourself tremendously. That is using just a tiny part of the database's features.

A PostgreSQL server is a powerful framework that can be used for all kinds of data processing, and even some non-data server tasks. It is a server platform that allows you to easily mix and match functions and libraries from several popular languages. Consider this complicated, multi-language sequence of work:

  1. Call a string parsing function in Perl.

  2. Convert the string to XSLT and process the result using JavaScript.

  3. Ask for a secure stamp from an external time-stamping service such as www.guardtime.com, using their SDK for C.

  4. Write a Python function to digitally sign the result.

This can be implemented as a series of simple function calls using several of the available server programming languages. The developer needing to accomplish all this work can just call a single PostgreSQL function without having to be aware of how the data is being passed between languages and libraries:

SELECT convert_to_xslt_and_sign(raw_data_string);

In this book, we will discuss several facets of PostgreSQL server programming. PostgreSQL has all of the native server-side programming features available in most larger database systems such as triggers, automated actions invoked automatically each time data is changed. But it has uniquely deep abilities to override the built-in behavior down to very basic operators. Examples of this customization include the following.

Writing User-defined functions (UDF) in C for carrying out complex computations:

  • Add complicated constraints to make sure that data in the server meets guidelines.

  • Create triggers in many languages to make related changes to other tables, log the actions, or forbid the action to happen if it does not meet certain criteria.

  • Define new data types and operators in the database.

  • Use the geography types defined in the PostGIS package.

  • Add your own index access methods for either existing or new data types, making some queries much more efficient.

What sort of things can you do with these features? There are limitless possibilities, such as the ones listed as follows:

  • Write data extractor functions to get just the interesting parts from structured data, such as XML or JSON, without needing to ship the whole, possibly huge, document to the client application.

  • Process events asynchronously, like sending mail without slowing down the main application. You could create a mail queue for changes to user info, populated by a trigger. A separate mail-sending process can consume this data whenever it's notified by an application process.

The rest of this chapter is presented as a series of descriptions of common data management tasks showing how they can be solved in a robust and elegant way via server programming.

The samples in this chapter are all tested to work, but they come with minimal commentary. They are here just to show you various things server programming can accomplish. The techniques described will be explained thoroughly in later chapters.

Why program in the server?


Developers program their code in a number of different languages and it could be designed to run just about anywhere. When writing an application, some people follow the philosophy that as much of the logic as possible for the application, should be pushed to the client. We see this in the explosion of applications leveraging JavaScript inside browsers. Others like to push the logic into the middle tier with an application server handling the business rules. These are all valid ways to design an application, so why would you want to program in the database server?

Let's start with a simple example. Many applications include a list of customers who have a balance in their account. We'll use this sample schema and data:

CREATE TABLE accounts(owner text, balance numeric);
INSERT INTO accounts VALUES ('Bob',100);
INSERT INTO accounts VALUES ('Mary',200);

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

When using a database, the most common way to interact with it is to use SQL queries. If you want to move 14 dollars from Bob's account to Mary's account, with simple SQL it would look like this:

UPDATE accounts SET balance = balance - 14.00 WHERE owner = 'Bob';
UPDATE accounts SET balance = balance + 14.00 WHERE owner = 'Mary';

But you have to also make sure that Bob actually has enough money (or credit) on his account. It's also important that if anything fails then none of the transactions happen. In an application program, the preceding code snippet becomes:

BEGIN;
SELECT amount FROM accounts WHERE owner = 'Bob' FOR UPDATE;
-- now in the application check that the amount is actually bigger than 14
UPDATE accounts SET amount = amount - 14.00 WHERE owner = 'Bob';
UPDATE accounts SET amount = amount + 14.00 WHERE owner = 'Mary';
COMMIT;

But did Mary actually have an account? If she did not, the last UPDATE will succeed by updating zero rows. If any of the checks fail, you should do a ROLLBACK instead of COMMIT. Once you have done all this for all the clients that transfer money, a new requirement will invariably arrive. Perhaps, the minimum amount that can be transferred is now 5.00. You will need to revisit all your code in all your clients again.

So what can you do to make all of this more manageable, more secure, and more robust? This is where server programming, executing code on the database server itself, can help. You can move the computations, checks, and data manipulations entirely into a User-defined function (UDF) on the server. This does not just ensure that you have only one copy of operation logic to manage, but also makes things faster by not needing several round-trips between client and server. If required, you can also make sure that only as much information as needed is given out of the database. For example, there is no business for most client applications to know how much money Bob has on his account. Mostly, they only need to know if there is enough money to make the transfer, or more to the point, if the transaction succeeded.

Using PL/pgSQL for integrity checks

PostgreSQL includes its own programming language named PL/pgSQL that is aimed to integrate easily with SQL commands. PL stands for programming language, and this is just one of the many languages available for writing server code. pgSQL is shorthand for PostgreSQL.

Unlike basic SQL, PL/pgSQL includes procedural elements, like the ability to use if/then/else statements and loops. You can easily execute SQL statements, or even loop over the result of a SQL statement in the language.

The integrity checks needed for the application can be done in a PL/pgSQL function which takes three arguments: names of the payer and recipient, and the amount to pay. This sample also returns the status of the payment:

CREATE OR REPLACE FUNCTION transfer( 
              i_payer text, 
              i_recipient text, 
              i_amount numeric(15,2))
RETURNS text 
AS
$$
DECLARE
  payer_bal numeric;
BEGIN
  SELECT balance INTO payer_bal 
     FROM accounts 
  WHERE owner = i_payer FOR UPDATE;
  IF NOT FOUND THEN
    RETURN 'Payer account not found';
  END IF;
  IF payer_bal < i_amount THEN
    RETURN 'Not enough funds';
  END IF;

  UPDATE accounts 
        SET balance = balance + i_amount 
    WHERE owner = i_recipient;
  IF NOT FOUND THEN
    RETURN 'Recipient does not exist';
  END IF;

  UPDATE accounts 
         SET balance = balance - i_amount 
   WHERE owner = i_payer;
  RETURN 'OK';
END;
$$ LANGUAGE plpgsql;

Here are a few examples of using this function, assuming you haven't executed the previously proposed UPDATE statements yet:

postgres=# SELECT * FROM accounts;
 owner | balance 
-------+---------
 Bob   |     100
 Mary  |     200
(2 rows)

postgres=# SELECT * FROM transfer('Bob','Mary',14.00);
 transfer 
----------
 OK
(1 row)

postgres=# SELECT * FROM accounts;
 owner | balance 
-------+---------
 Mary  |  214.00
 Bob   |   86.00
(2 rows)

Your application would need to check the return code and decide how to handle these errors. As long as it was written to reject any unexpected value, you could extend this function to do more checking, such as minimum transferrable amount, and be sure it would be prevented. There are three errors this can return:

postgres=# SELECT * FROM transfer('Fred','Mary',14.00);
        transfer         
-------------------------
 Payer account not found
(1 row)

postgres=# SELECT * FROM transfer('Bob','Fred',14.00);
         transfer         
--------------------------
 Recipient does not exist
(1 row)

postgres=# SELECT * FROM transfer('Bob','Mary',500.00);
     transfer     
------------------
 Not enough funds
(1 row)

For these checks to always work, you would need to make all transfer operations go through the function, rather than manually changing the values with SQL statements.

About this book's code examples


The sample output shown here has been created with PostgreSQL's psql utility, usually running on a Linux system. Most of the code will work the same way if you are using a GUI utility like pgAdmin3 to access the server instead. When you see lines like this:

postgres=# SELECT 1;

The postgres=# part is the prompt shown by the psql command.

Examples in this book have been tested using PostgreSQL 9.2. They will probably work on PostgreSQL version 8.3 and later. There have not been many major changes to how server programming happens in the last few versions of PostgreSQL. The syntax has become stricter over time to reduce the possibility of mistakes in server programming code. Due to the nature of those changes, most code from newer versions will still run on the older ones, unless it uses very new features. However, the older code can easily fail to run due to one of the newly-enforced restrictions.

Switching to the expanded display

When using the psql utility to execute a query, PostgreSQL normally outputs the result using vertically aligned columns:

$ psql -c "SELECT 1 AS test"
 test 
------
    1
(1 row)

$ psql
psql (9.2.1)
Type "help" for help.

postgres=# SELECT 1 AS test;
 test 
------
    1
(1 row)

You can tell when you're seeing a regular output because it will end up showing the number of rows.

This type of output is hard to fit into the text of a book like this. It's easier to print the output from what the program calls the expanded display, which breaks each column into a separate line. You can switch to expanded using either the -x command-line switch, or by sending \x to the psql program. Here is an example of using each:

$ psql -x -c "SELECT 1 AS test"
-[ RECORD 1 ]
test | 1

$ psql
psql (9.2.1)
Type "help" for help.

postgres=# \x
Expanded display is on.
postgres=# SELECT 1 AS test;
-[ RECORD 1 ]
test | 1

Notice how the expanded output doesn't show the row count, and it numbers each output row. To save space, not all of the examples in the book will show the expanded output being turned on. You can normally tell which type you're seeing by differences like this, whether you're seeing rows or RECORD. The expanded mode will be normally preferred when the output of the query is too wide to fit into the available width of the book.

Moving beyond simple functions


Server programming can mean a few different things. Server programming is not just writing server functions. There are many other things you can do in the server which can be considered programming.

Data comparisons using operators

For more complex tasks you can define your own types, operators, and casts from one type to another, letting you actually compare apples and oranges.

As shown in the next example, you can define the type, fruit_qty, for fruit-with-quantity and then teach PostgreSQL to compare apples and oranges, say to make one orange to be worth 1.5 apples and convert apples to oranges:

postgres=# CREATE TYPE FRUIT_QTY as (name text, qty int);

postgres=# SELECT '("APPLE", 3)'::FRUIT_QTY;
 fruit_quantity
----------------
 (APPLE,3)
(1 row)

CREATE FUNCTION fruit_qty_larger_than(left_fruit FRUIT_QTY,
                                      right_fruit FRUIT_QTY)
RETURNS BOOL
AS $$
BEGIN
    IF (left_fruit.name = 'APPLE' AND right_fruit.name = 'ORANGE')
    THEN
        RETURN left_fruit.qty > (1.5 * right_fruit.qty);
    END IF;
    IF (left_fruit.name = 'ORANGE' AND right_fruit.name = 'APPLE' )
    THEN
        RETURN (1.5 * left_fruit.qty) > right_fruit.qty;
    END IF;
    RETURN  left_fruit.qty > right_fruit.qty;
END;
$$
LANGUAGE plpgsql;

postgres=# SELECT fruit_qty_larger_than('("APPLE", 3)'::FRUIT_QTY,'("ORANGE", 2)'::FRUIT_QTY);
 fruit_qty_larger_than 
-----------------------
 f
(1 row)

postgres=# SELECT fruit_qty_larger_than('("APPLE", 4)'::FRUIT_QTY,'("ORANGE", 2)'::FRUIT_QTY);
 fruit_qty_larger_than 
-----------------------
 t
(1 row)

CREATE OPERATOR > (
    leftarg = FRUIT_QTY,
    rightarg = FRUIT_QTY,
    procedure = fruit_qty_larger_than,
    commutator = >
);

 postgres=# SELECT '("ORANGE", 2)'::FRUIT_QTY > '("APPLE", 2)'::FRUIT_QTY;
 ?column? 
----------
 t
(1 row)

postgres=# SELECT '("ORANGE", 2)'::FRUIT_QTY > '("APPLE", 3)'::FRUIT_QTY;
 ?column? 
----------
 f
(1 row)

Managing related data with triggers


Server programming can also mean setting up automated actions (triggers), so that some operations in the database cause some other things to happen as well. For example, you can set up a process where making an offer on some items is automatically reserved to them in the stock table.

So let's create a fruit stock table:

CREATE TABLE fruits_in_stock (
    name text PRIMARY KEY,
    in_stock integer NOT NULL,
    reserved integer NOT NULL DEFAULT 0,
    CHECK (in_stock between 0 and 1000 ),
    CHECK (reserved <= in_stock)
);

The CHECK constraints make sure that some basic rules are followed: you can't have more than 1000 fruits in stock (they'll probably go bad), you can't have negative stock, and you can't reserve more than what you have.

CREATE TABLE fruit_offer (
    offer_id serial PRIMARY KEY,
    recipient_name text,
    offer_date timestamp default current_timestamp,
    fruit_name text REFERENCES fruits_in_stock,
    offered_amount integer
);

The offer table has an ID for the offer (so you can distinguish between offers later), recipient, date, offered fruit name, and offered amount.

For automating the reservation management, you first need a TRIGGER function, which implements the management logic:

CREATE OR REPLACE FUNCTION reserve_stock_on_offer () RETURNS trigger AS $$
    BEGIN
        IF TG_OP = 'INSERT' THEN
            UPDATE fruits_in_stock
         SET reserved = reserved + NEW.offered_amount
       WHERE name = NEW.fruit_name;
  ELSIF TG_OP = 'UPDATE' THEN
      UPDATE fruits_in_stock
         SET reserved = reserved - OLD.offered_amount
                                     + NEW.offered_amount
       WHERE name = NEW.fruit_name;
  ELSIF TG_OP = 'DELETE' THEN
     UPDATE fruits_in_stock
        SET reserved = reserved - OLD.offered_amount
      WHERE name = OLD.fruit_name;
        END IF;
        RETURN NEW;
    END;
$$ LANGUAGE plpgsql;

You have to tell PostgreSQL to call this function each and every time the offer row is changed:

CREATE TRIGGER manage_reserve_stock_on_offer_change
AFTER INSERT OR UPDATE OR DELETE ON fruit_offer
    FOR EACH ROW EXECUTE PROCEDURE reserve_stock_on_offer();

After this we are ready to test the functionality. First, we will add some fruit to our stock:

INSERT INTO fruits_in_stock(name,in_stock)

Then, we check that stock (this is using the expanded display):

postgres=# \x
Expanded display is on.
postgres=# SELECT * FROM fruits_in_stock;
-[ RECORD 1 ]----
name     | APPLE
in_stock | 500
reserved | 0
-[ RECORD 2 ]----
name     | ORANGE
in_stock | 500
reserved | 0

Next, let's make an offer of 100 apples to Bob:

postgres=# INSERT INTO fruit_offer(recipient_name,fruit_name,offered_amount) VALUES('Bob','APPLE',100);
INSERT 0 1
postgres=# SELECT * FROM fruit_offer;
-[ RECORD 1 ]--+---------------------------
offer_id       | 1
recipient_name | Bob
offer_date     | 2013-01-25 15:21:15.281579
fruit_name     | APPLE
offered_amount | 100

postgres=# SELECT * FROM fruits_in_stock;
-[ RECORD 1 ]----
name     | ORANGE
in_stock | 500
reserved | 0
-[ RECORD 2 ]----
name     | APPLE
in_stock | 500
reserved | 100

On checking the stock we see that indeed 100 apples are reserved:

postgres=# SELECT * FROM fruits_in_stock;
-[ RECORD 1 ]----
name     | ORANGE
in_stock | 500
reserved | 0
-[ RECORD 2 ]----
name     | APPLE
in_stock | 500
reserved | 100

If we change the offered amount, the reservation follows:

postgres=# UPDATE fruit_offer SET offered_amount = 115 WHERE offer_id = 1;
UPDATE 1
postgres=# SELECT * FROM fruits_in_stock;
-[ RECORD 1 ]----
name     | ORANGE
in_stock | 500
reserved | 0
-[ RECORD 2 ]----
name     | APPLE
in_stock | 500
reserved | 115

We also get some extra benefits. First, because of the constraint on the stock table, you can't sell the reserved apples:

postgres=# UPDATE fruits_in_stock SET in_stock = 100 WHERE name = 'APPLE';
ERROR:  new row for relation "fruits_in_stock" violates check constraint "fruits_in_stock_check"
DETAIL:  Failing row contains (APPLE, 100, 115).

More interestingly, you also can't reserve more than you have, even though the constraints are on another table:

postgres=# UPDATE fruit_offer SET offered_amount = 1100 WHERE offer_id = 1;
ERROR:  new row for relation "fruits_in_stock" violates check constraint "fruits_in_stock_check"
DETAIL:  Failing row contains (APPLE, 500, 1100).
CONTEXT:  SQL statement "UPDATE fruits_in_stock
       SET reserved = reserved - OLD.offered_amount
                                     + NEW.offered_amount
     WHERE name = NEW.fruit_name"
PL/pgSQL function reserve_stock_on_offer() line 8 at SQL statement

When you finally delete the offer, the reservation is released:

postgres=# DELETE FROM fruit_offer WHERE offer_id = 1;
DELETE 1
postgres=# SELECT * FROM fruits_in_stock;
-[ RECORD 1 ]----
name     | ORANGE
in_stock | 500
reserved | 0
-[ RECORD 2 ]----
name     | APPLE
in_stock | 500
reserved | 0

In a real system, you probably would archive the old offer before deleting it.

Auditing changes


If you need to know who did what to the data and when it was done, one way to do that is to log every action that is performed on an important table.

There are at least two equally valid ways of doing the auditing:

  • Use auditing triggers

  • Allow tables to be accessed only through functions, and do the auditing inside these functions

Here, we will take a look at minimal examples of both the approaches.

First, let's create the tables:

CREATE TABLE salaries(
    emp_name text PRIMARY KEY,
    salary integer NOT NULL
);

CREATE TABLE salary_change_log(
    changed_by text DEFAULT CURRENT_USER,
    changed_at timestamp DEFAULT CURRENT_TIMESTAMP,
    salary_op text,
    emp_name text,
    old_salary integer,
    new_salary integer
);
REVOKE ALL ON salary_change_log FROM PUBLIC;
GRANT ALL ON salary_change_log TO managers;

You don't generally want your users to be able to change audit logs, so grant only the managers the right to access these. If you plan to let users access the salary table directly, you should put a trigger on it for auditing:

CREATE OR REPLACE FUNCTION log_salary_change () RETURNS trigger AS $$
    BEGIN
        IF TG_OP = 'INSERT' THEN
      INSERT INTO salary_change_log(salary_op,emp_name,new_salary)
     VALUES (TG_OP,NEW.emp_name,NEW.salary);
  ELSIF TG_OP = 'UPDATE' THEN        INSERT INTO salary_change_log(salary_op,emp_name,old_salary,new_salary)
      VALUES (TG_OP,NEW.emp_name,OLD.salary,NEW.salary);
  ELSIF TG_OP = 'DELETE' THEN
      INSERT INTO salary_change_log(salary_op,emp_name,old_salary)
      VALUES (TG_OP,NEW.emp_name,OLD.salary);
        END IF;
        RETURN NEW;
    END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

CREATE TRIGGER audit_salary_change
AFTER INSERT OR UPDATE OR DELETE ON salaries
    FOR EACH ROW EXECUTE PROCEDURE log_salary_change ();

Now, let's test out some salary management:

postgres=# INSERT INTO salaries values('Bob',1000);
INSERT 0 1
postgres=# UPDATE salaries set salary = 1100 where emp_name = 'Bob';
UPDATE 1
postgres=# INSERT INTO salaries values('Mary',1000);
INSERT 0 1
postgres=# UPDATE salaries set salary = salary + 200;
UPDATE 2
postgres=# SELECT * FROM salaries;
-[ RECORD 1 ]--
emp_name | Bob
salary   | 1300
-[ RECORD 2 ]--
emp_name | Mary
salary   | 1200

Each one of those changes is saved into the salary change log table for auditing purposes:

postgres=# SELECT * FROM salary_change_log;
-[ RECORD 1 ]--------------------------
changed_by | frank
changed_at | 2012-01-25 15:44:43.311299
salary_op  | INSERT
emp_name   | Bob
old_salary | 
new_salary | 1000
-[ RECORD 2 ]--------------------------
changed_by | frank
changed_at | 2012-01-25 15:44:43.313405
salary_op  | UPDATE
emp_name   | Bob
old_salary | 1000
new_salary | 1100
-[ RECORD 3 ]--------------------------
changed_by | frank
changed_at | 2012-01-25 15:44:43.314208
salary_op  | INSERT
emp_name   | Mary
old_salary | 
new_salary | 1000
-[ RECORD 4 ]--------------------------
changed_by | frank
changed_at | 2012-01-25 15:44:43.314903
salary_op  | UPDATE
emp_name   | Bob
old_salary | 1100
new_salary | 1300
-[ RECORD 5 ]--------------------------
changed_by | frank
changed_at | 2012-01-25 15:44:43.314903
salary_op  | UPDATE
emp_name   | Mary
old_salary | 1000new_salary | 1200

On the other hand, you may not want anybody to have direct access to the salary table, in which case you can perform the following:

REVOKE ALL ON salaries FROM PUBLIC;

Also, give users access to only two functions: the first is for any user looking at salaries and the other is for changing salaries, which is available only to managers.

The functions themselves will have all the access to underlying tables because they are declared as SECURITY DEFINER, which means they run with the privileges of the user who created them.

The salary lookup function will look like the following:

CREATE OR REPLACE FUNCTION get_salary(text)
RETURNS integer
AS $$
    -- if you look at other people's salaries, it gets logged
    INSERT INTO salary_change_log(salary_op,emp_name,new_salary)
    SELECT 'SELECT',emp_name,salary
      FROM salaries
     WHERE upper(emp_name) = upper($1)
       AND upper(emp_name) != upper(CURRENT_USER); – don't log select of own salary
    -- return the requested salary
    SELECT salary FROM salaries WHERE upper(emp_name) = upper($1);
$$ LANGUAGE SQL SECURITY DEFINER;

Notice that we implemented a "soft security" approach, where you can look up for other people's salaries, but you have to do it responsibly, that is, only when you need to as your manager will know that you have checked.

The set_salary() function abstracts away the need to check if the user exists; if the user does not, it is created. Setting someone's salary to 0 will remove him from the salary table. Thus, the interface is much simplified and the client application of these functions needs to know and do less:

CREATE OR REPLACE FUNCTION set_salary(i_emp_name text, i_salary int)
RETURNS TEXT AS $$
DECLARE
    old_salary integer;
BEGIN
    SELECT salary INTO old_salary
      FROM salaries
     WHERE upper(emp_name) = upper(i_emp_name);
    IF NOT FOUND THEN
        INSERT INTO salaries VALUES(i_emp_name, i_salary);
  INSERT INTO salary_change_log(salary_op,emp_name,new_salary)
      VALUES ('INSERT',i_emp_name,i_salary);
        RETURN 'INSERTED USER ' || i_emp_name;
    ELSIF i_salary > 0 THEN
        UPDATE salaries
     SET salary = i_salary
   WHERE upper(emp_name) = upper(i_emp_name);
  INSERT INTO salary_change_log
                 (salary_op,emp_name,old_salary,new_salary)
      VALUES ('UPDATE',i_emp_name,old_salary,i_salary);
        RETURN 'UPDATED USER ' || i_emp_name;
    ELSE -- salary set to 0
        DELETE FROM salaries WHERE upper(emp_name) = upper(i_emp_name);
  INSERT INTO salary_change_log(salary_op,emp_name,old_salary)
      VALUES ('DELETE',i_emp_name,old_salary);
        RETURN 'DELETED USER ' || i_emp_name;
    END IF;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

Now, drop the audit trigger (or the changes will be logged twice) and test the new functionality:

postgres=# DROP TRIGGER audit_salary_change ON salaries;
DROP TRIGGER
postgres=# 
postgres=# SELECT set_salary('Fred',750);
-[ RECORD 1 ]------------------
set_salary | INSERTED USER Fred

postgres=# SELECT set_salary('frank',100);
-[ RECORD 1 ]-------------------
set_salary | INSERTED USER frank

postgres=# SELECT * FROM salaries ;
-[ RECORD 1 ]---
emp_name | Bob
salary   | 1300
-[ RECORD 2 ]---
emp_name | Mary
salary   | 1200
-[ RECORD 3 ]---
emp_name | Fred
salary   | 750
-[ RECORD 4 ]---
emp_name | frank
salary   | 100

postgres=# SELECT set_salary('mary',0);
-[ RECORD 1 ]-----------------
set_salary | DELETED USER mary

postgres=# SELECT * FROM salaries ;
-[ RECORD 1 ]---
emp_name | Bob
salary   | 1300
-[ RECORD 2 ]---
emp_name | Fred
salary   | 750
-[ RECORD 3 ]---
emp_name | frank
salary   | 100

postgres=# SELECT * FROM salary_change_log ;
...
-[ RECORD 6 ]--------------------------
changed_by | gsmith
changed_at | 2013-01-25 15:57:49.057592
salary_op  | INSERT
emp_name   | Fred
old_salary | 
new_salary | 750
-[ RECORD 7 ]--------------------------
changed_by | gsmith
changed_at | 2013-01-25 15:57:49.062456
salary_op  | INSERT
emp_name   | frank
old_salary | 
new_salary | 100
-[ RECORD 8 ]--------------------------
changed_by | gsmith
changed_at | 2013-01-25 15:57:49.064337
salary_op  | DELETE
emp_name   | mary
old_salary | 1200
new_salary |

Data cleaning


We notice that employee names don't have consistent cases. It would be easy to enforce consistency by adding a constraint:

CHECK (emp_name = upper(emp_name))

However, it is even better to just make sure that it is stored as uppercase, and the simplest way to do it is by using trigger:

CREATE OR REPLACE FUNCTION uppercase_name () 
  RETURNS trigger AS $$
    BEGIN
        NEW.emp_name = upper(NEW.emp_name);
        RETURN NEW;
    END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER uppercase_emp_name
BEFORE INSERT OR UPDATE OR DELETE ON salaries
    FOR EACH ROW EXECUTE PROCEDURE uppercase_name ();

The next set_salary() call for a new employee will now insert emp_name in uppercase:

postgres=# SELECT set_salary('arnold',80);
-[ RECORD 1 ]-------------------
set_salary | INSERTED USER arnold

As the uppercasing happened inside a trigger, the function response still shows a lowercase name, but in the database it is uppercase:

postgres=# SELECT * FROM salaries ;
-[ RECORD 1 ]---
emp_name | Bob
salary   | 1300
-[ RECORD 2 ]---
emp_name | Fred
salary   | 750
-[ RECORD 3 ]---
emp_name | frank
salary   | 100
-[ RECORD 4 ]---
emp_name |  ARNOLD
salary   | 80

After fixing the existing mixed-case emp_names, we can make sure that all emp_names will be in uppercase in the future by adding a constraint:

postgres=# update salaries set emp_name = upper(emp_name) where not emp_name = upper(emp_name);
UPDATE 3
postgres=# alter table salaries add constraint emp_name_must_be_uppercasepostgres-# CHECK (emp_name = upper(emp_name));
ALTER TABLE

If this behavior is needed in more places, it would make sense to define a new type – say u_text, which is always stored as uppercase. You will learn more about this approach in the chapter about defining user types.

Custom sort orders


The last example in this chapter is about using functions for different ways of sorting.

Say we are given a task of sorting words by their vowels only, and in addition to that, make the last vowel the most significant one when sorting. While this task may seem really complicated at first, it is easy to solve with functions:

CREATE OR REPLACE FUNCTION reversed_vowels(word text) 
    RETURNS text AS $$
  vowels = [c for c in word.lower() if c in 'aeiou']
  vowels.reverse()
  return ''.join(vowels)
$$ LANGUAGE plpythonu IMMUTABLE;

postgres=# select word,reversed_vowels(word) from words order by reversed_vowels(word);
    word     | reversed_vowels
-------------+-----------------
 Abracadabra | aaaaa
 Great       | ae
 Barter      | ea
 Revolver    | eoe
(4 rows)

The best part is that you can use your new function in an index definition:

postgres=# CREATE INDEX reversed_vowels_index ON words (reversed_vowels(word));
CREATE INDEX

The system will automatically use this index whenever the function reversed_vowels(word) is used in the WHERE clause or ORDER BY.

Programming best practices


Developing application software is complicated. Some of the approaches to help manage that complexity are so popular that they've been given simple acronyms to remember them. Next, we'll introduce some of these principles and show how server programming helps make them easier to follow.

KISS – keep it simple stupid

One of the main techniques to successful programming is writing simple code. That is, writing code that you can easily understand three years from now, and that others can understand as well. It is not always achievable, but it almost always makes sense to write your code in the simplest way possible. You may rewrite parts of it later for various reasons such as speed, code compactness, to show off how clever you are, and so on. But always write the code first in a simple way, so you can absolutely be sure that it does what you want. Not only do you get working on code fast, you also have something to compare to when you try more advanced ways to do the same thing.

And remember, debugging is harder than writing code; so if you write the code in the most complex way you can, you will have a really hard time debugging it.

It is often easier to write a set returning function instead of a complex query. Yes, it will probably run slower than the same thing implemented as a single complex query due to the fact that the optimizer can do very little to code written as functions, but the speed may be sufficient for your needs. If more speed is needed, it's very likely to refactor the code piece by piece, joining parts of the function into larger queries where the optimizer has a better chance of discovering better query plans until the performance is acceptable again.

Remember that for most of the times, you don't need the absolutely fastest code. For your clients or bosses, the best code is the one that does the job well and arrives on time.

DRY – don't repeat yourself

This one means to try to implement any piece of business logic just once, and put the code for doing it in the right place.

It may sometimes be hard, for example you do want to do some checking of your web forms in the browser, but still do the final check in the database. But as a general guideline it is very much valid.

Server programming helps a lot here. If your data manipulation code is in the database near the data, all the data users have easy access to it, and you will not need to manage a similar code in a C++ Windows program, two PHP websites, and a bunch of Python scripts doing nightly management tasks. If any of them needs to do this thing to a customer's table, they just call:

SELECT * FROM  do_this_thing_to_customers(arg1, arg2, arg3);

And that's it!

If the logic behind the function needs changing, you just change the function with no downtime and no complicated orchestration of pushing database query updates to several clients. Once the function is changed in the database, it is changed for all users.

YAGNI – you ain't gonna need it

In other words, don't do more than you absolutely need to.

If you have a creepy feeling that your client is not yet well aware of what the final database will look like or what it will do, it's helpful to resist the urge to design "everything" into the database. A much better way is to do the minimal implementation that satisfies the current spec, but do it with extensibility in mind. It is much easier to "paint yourself into a corner" when implementing a big spec with large imaginary parts.

If you organize your access to the database through functions, it is often possible to do even large rewrites of business logic without touching the frontend application code. Your application still does SELECT * FROM do_this_thing_to_customers(arg1, arg2, arg3) even after you have rewritten the function five times and changed the whole table structure twice.

SOA – service-oriented architecture

Usually when you hear the acronym SOA, it comes from Enterprise Software people selling you a complex set of SOAP services. But the essence of the SOA is organizing your software platform as a set of services that clients and other services call for performing certain well-defined atomic tasks, such as:

  • Checking a user's password and credentials

  • Presenting him/her with a list of his/her favorite websites

  • Selling him/her a new red dog collar with complementary membership in the red-collared dog club

These services can be implemented as SOAP calls with corresponding WSDL definitions and Java servers with servlet containers, and complex management infrastructure. They can also be a set of PostgreSQL functions, taking a set of arguments and returning a set of values. If arguments or return values are complex, they can be passed as XML or JSON, but often a simple set of standard PostgreSQL data types is enough. In Chapter 9, Scaling Your Database with PL/Proxy, we will learn how to make such PostgreSQL-based SOA service infinitely scalable.

Type extensibility

Some of the preceding techniques are available in other databases, but PostgreSQL's extensibility does not stop here. In PostgreSQL, you can just write User-defined functions (UDFs) in any of the most popular scripting languages. You can also define your own types, not just domains, which are standard types with some extra constraints attached, but new full-fledged types too.

For example, a Dutch company MGRID has developed value with unit set of data types, so that you can divide 10 km by 0.2 hour and get the result in 50 km/h. Of course, you can also cast the same result to meters per second or any other unit of speed. And yes, you can get this as a fraction of c—the speed of light.

This kind of functionality needs both the types themselves and overloaded operands, which know that if you divide distance by time then the result is speed. You will also need user-defined casts, which are automatically- or manually-invoked conversion functions between types.

MGRID developed this for use in medical applications where the cost of error can be high—the difference between 10 ml and 10 cc can be vital. But using a similar system could also have averted many other disasters, where using wrong units has ended with producing bad computation results. If the unit is always there together with the amount, the possibility for these kinds of errors is very much diminished. You can also add your own index methods if you have some programming skills and your problem domain is not well served by the existing indexes. There is already a respectable set of index types included in the core PostgreSQL, as well as several others which are developed outside the core.

The latest index method which became officially included in PostgreSQL is KNN (K Nearest Neighbor)—a clever index, which can return K rows ordered by their distance from the desired search target. One use of KNN is in fuzzy text search, where this can be used for ranking full-text search results by how well they match the search terms. Before KNN, this kind of thing was done by querying all rows which matched even a little, and then sorting all these by the distance function and returning K top rows as the last step.

If done using KNN index, the index access can start returning the rows in the desired order; so a simple LIMIT K function will return you the K top matches.

The KNN index can also be used for real distances, for example answering the request "Give me the 10 nearest pizza places to central station."

As you see, index types are separate from the data types they index. As another example, the same GIN (General Inverted Index) can be used for full-text search (together with stemmers, thesauri, and other text processing stuff) as well as indexing elements of integer arrays.

On caching


Yet another place where server-side programming can be used is for caching values, which are expensive to compute. The basic pattern here is:

  1. Check if the value is cached.

  2. If not or the value is too old, compute and cache it.

  3. Return the cached value.

For example, calculating sales for a company is the perfect item to cache. Perhaps, a large retail company has 1,000 stores with potentially millions of individual sales transactions per day. If the corporate headquarters is looking for sales trends, it is much more efficient if the daily sales numbers were precalculated at the store level instead of summing up millions of daily transactions.

If the value is simple, like looking up a user's information from a single table based on the user ID, you don't need to do anything. The value becomes cached in PostgreSQL's internal page cache, and all lookups to it are so fast that even on a very fast network most of the time spent doing the lookups are in the network, not in the actual lookup. In such a case, getting data from a PostgreSQL database is as fast as getting it from any other in-memory cache (like memcached) but without any extra overhead in managing the cache.

Another use-case of caching is implementing materialized views. These are views which are precomputed only when needed, not each time one selects from that view. Some SQL databases have materialized views as a separate database object, but in PostgreSQL you have to do it all yourself, using other database features for automating the whole process.

Wrap up – why program in the server?


The main advantages of doing most data manipulation code server-side are the following.

Performance

Doing the computation near data is almost always a performance win, as the latencies for getting the data are minimal. In a typical data-intensive computation, most of the time tends to be spent in getting the data. Therefore, making data access inside the computation faster is the best way to make the whole thing fast. On my laptop it takes 2.2 ms to query one random row from a 1,00,000 row database into the client, but it takes only 0.12 ms to get the data inside the database. This is 20 times faster and this is inside the same machine over Unix sockets. The difference can be bigger if there is a network connection between client and server.

A small real-word story:

A friend of mine was called to help a large company (I'm sure you all know it, though I can't tell you which one) to try to make its e-mail sending application faster. They had implemented their e-mail generation system with all the latest Java EE technologies, first getting the data from the database, passing the data around between services, and serializing and de-serializing it several times before finally doing XSLT transform on the data to produce the e-mail text. The end result being that it produced only a few hundred e-mails per second and they were falling behind with their responses.

When he rewrote the process to use a PL/Perl function inside the database to format the data and the query returned already fully-formatted e-mails, it suddenly started spewing out tens of thousands of e-mails per second, and they had to add a second copy of sent mail to actually be able to send them out.

Ease of maintenance

If all data manipulation code is in a database, either as database functions or views, the actual upgrade process becomes very easy. All that is needed is running a DDL script that redefines the functions and all the clients automatically use the new code with no downtime, and no complicated coordination between several frontend systems and teams.

Simple ways to tighten security

If all access for some possibly insecure servers goes through functions, the database user of these servers use can be granted only the access to the needed functions and nothing else. They can't see the table data or even the fact that these tables exist. So even if that server becomes compromised, all it can do is continue to call the same functions. Also, there is no possibility to steal passwords, e-mails, or other sensitive information by issuing its own queries like SELECT * FROM users; and getting all the data there is in the database.

And the most important thing, programming in server is fun!

Summary


Programming inside the database server is not always the first thing that comes to mind to many developers, but it's unique placement inside the application stack gives it some powerful advantages. Your application can be faster, more secure, and more maintainable by pushing your logic into the database. With server-side programming in PostgreSQL, you can:

  • Secure your data using functions

  • Audit access to your data using triggers

  • Enrich your data using custom data types

  • Analyze your data using custom operators

And this is just the very start of what you can do inside PostgreSQL. Throughout the rest of this book, you will learn about many other ways to write powerful applications by programming inside PostgreSQL.

Left arrow icon Right arrow icon

Key benefits

  • Understand the extension framework of PostgreSQL, and leverage it in ways that you haven't even invented yet
  • Write functions, create your own data types, all in your favourite programming language
  • Step-by-step tutorial with plenty of tips and tricks to kick-start server programming

Description

Learn how to work with PostgreSQL as if you spent the last decade working on it. PostgreSQL is capable of providing you with all of the options that you have in your favourite development language and then extending that right on to the database server. With this knowledge in hand, you will be able to respond to the current demand for advanced PostgreSQL skills in a lucrative and booming market."PostgreSQL Server Programming" will show you that PostgreSQL is so much more than a database server. In fact, it could even be seen as an application development framework, with the added bonuses of transaction support, massive data storage, journaling, recovery and a host of other features that the PostgreSQL engine provides. This book will take you from learning the basic parts of a PostgreSQL function, then writing them in languages other than the built-in PL/PgSQL. You will see how to create libraries of useful code, group them into even more useful components, and distribute them to the community. You will see how to extract data from a multitude of foreign data sources, and then extend PostgreSQL to do it natively. And you can do all of this in a nifty debugging interface that will allow you to do it efficiently and with reliability.

Who is this book for?

"PostgreSQL Server Programming" is for moderate to advanced PostgreSQL database professionals. To get the best understanding of this book, you should have general experience in writing SQL, a basic idea of query tuning, and some coding experience in a language of your choice.

What you will learn

  • Write functions in the built-in PL/PgSQL language or your language of choice
  • Extract data from foreign data sources
  • Add operators, data types, and other custom elements
  • Debug and code efficiently
  • Decide what machine resources your process will use
  • Create your own data types, operators, functions, aggregates, and even your own language
  • Fully integrate the database layer into your development

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 25, 2013
Length: 264 pages
Edition : 1st
Language : English
ISBN-13 : 9781849516983
Category :
Tools :
:

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jun 25, 2013
Length: 264 pages
Edition : 1st
Language : English
ISBN-13 : 9781849516983
Category :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
R$50 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
R$500 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just R$25 each
Feature tick icon Exclusive print discounts
R$800 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just R$25 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total R$ 613.98
PostgreSQL 9.0 High Performance
R$306.99
PostgreSQL Server Programming
R$306.99
Total R$ 613.98 Stars icon
Banner background image

Table of Contents

10 Chapters
What Is a PostgreSQL Server? Chevron down icon Chevron up icon
Server Programming Environment Chevron down icon Chevron up icon
Your First PL/pgSQL Function Chevron down icon Chevron up icon
Returning Structured Data Chevron down icon Chevron up icon
PL/pgSQL Trigger Functions Chevron down icon Chevron up icon
Debugging PL/pgSQL Chevron down icon Chevron up icon
Using Unrestricted Languages Chevron down icon Chevron up icon
Writing Advanced Functions in C Chevron down icon Chevron up icon
Scaling Your Database with PL/Proxy Chevron down icon Chevron up icon
Publishing Your Code as PostgreSQL Extensions Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.7
(9 Ratings)
5 star 88.9%
4 star 0%
3 star 0%
2 star 11.1%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




David Lee Dec 27, 2014
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book is helpful for anyone that wants to learn PostgreSQL.
Amazon Verified review Amazon
Shaun Thomas Dec 12, 2013
Full star icon Full star icon Full star icon Full star icon Full star icon 5
There comes a time in every DBA's life, that he needs to add functionality to his database software. To most DBAs, and indeed for most databases, this amounts to writing a few stored procedures or triggers. In extremely advanced cases, the database may provide an API for direct C-language calls. PostgreSQL however, has gone above and beyond this for several years, and have continuously made the process easier with each iteration.So once again, I'm glad to review a book by three authors in the industry who either work directly on PostgreSQL internals, or use it extensively enough to contribute vastly important functionality. Hannu Krosing, Jim Mlodgenski, and Kirk Roybal collaborated to produce PostgreSQL Server Programming, a necessary and refreshing addition to the PostgreSQL compendium. I don't know who contributed each individual chapter, but I can make a fairly educated guess that anything PL/Proxy related came from Mr. Krosing, its original designer.As usual for a book of this type, things start off with relative simplicity. The authors make a very important note I try to convey to staff developers regularly: let the database do its job. The database is there to juggle data, handle set theory, and otherwise reduce traffic to and from the application to a minimum. This saves both network bandwidth and processing time on the front end, which can be combined with caching to service vastly larger infrastructures than otherwise possible.Beyond this, are the basics. Using stored procedures, taking advantage of triggers, writing functions that can return sets. The gamut of examples runs from data auditing and logging, to integrity control and a certain extent of business logic. One or more of the authors suggests that functions are the proper interface to the database, to reduce overhead, and provide an abstract API that can change without directly altering the application code. It is, after all, the common denominator in any library or tool dealing with the data. While I personally don't agree with this type of approach, the logical reasoning is sound, and can help simplify and prevent many future headaches.But then? Then comes the real nitty-gritty. PostgreSQL allows interfacing with the database through several languages, including Python, Perl, and even TCL/TK, and the authors want you to know it. Databases like Oracle have long allowed C-level calls to the database, and this has often included Java in later incarnations. PostgreSQL though, is the only RDBMS that acts almost like its own middle layer. It's a junction that allows JSON (a Javascript encapsulation) accessed via Python, to be filtered by a TCL trigger, on a table that matched data through an index produced by a Perl function. The authors provide Python and C examples for much of this scenario, including the JSON!And that's where this book really shines: examples. There's Python, C, PLPGSQL, triggers, procedures, compiled code, variants of several difficult techniques, and more. In the C case, things start with a simple "Hello World" type you might see in a beginning programming class, and the author steps through increasingly complex examples. Eventually, the C code is returning sets of sets of data per call, as if simulating several table rows.In the more concrete, the authors provide copious links to external documentation and Wiki pages for those who want to explore this territory in more depth. Beyond that, they want readers to know about major sources of contributed code and extensions, all to make the database more useful, and perhaps entice the reader join in the fun. Everything from installing, to details necessary for writing extensions is covered, so that is well within the realm of possibility!I already mentioned that at least one of the authors encourages functional database access instead of direct SQL. Well, there's more than the obvious reasons for this: PL/Proxy is a procedural language that uses functions to facilitate database sharding for horizontal scalability. Originally designed for Skype, PL/Proxy has been used by many other projects. While it might not apply to everyone, sharding is a very real technique with non-trivial implementation details that have stymied the efforts of many development teams.I actually would have liked a more extensive chapter or two regarding PL/Proxy. While several examples of functional access are outlined for a chat server, none of these functions are later modified in a way that would obviously leverage PL/Proxy. Further, Krosing doesn't address how sequences should be distributed so data on all the various servers get non-conflicting surrogate keys. It would have been nice to see an end-to-end implementation.All in all, anyone serious about their PostgreSQL database should take a look. Getting a server up and running is only half the story; making the database an integral component of an application instead of a mere junk drawer provides more functionality with fewer resources. It's good to see a book that not only emphasizes this, but conveys the knowledge in order to accomplish such a feat. Hannu, Jim, and Kirk have all done the community a great service. I hope to see revisions of this in the future as PostgreSQL matures.
Amazon Verified review Amazon
Pierre Jul 25, 2013
Full star icon Full star icon Full star icon Full star icon Full star icon 5
At long last, a PostgreSQL book. Why saying that with all the existing PostgreSQL books ? It's just that most of these books cover usual topics, that are not PostgreSQL specific. Replication, basic administration... Here, we are going straigh to some of the best features of PostgreSQL : its high extensibility with server-side programming.The book begins with explanations about why using server-side programming, and then a tutorial to guide you through PL/pgSQL.Warning : that tutorial, as the whole book, assumes you have previous PostgreSQL knowledge.Afterwards, you'll go through the triggers world, learn some stuff about debugging in case you are not a perfect developper, and then you'll travel to more exotic server programming choices. The language used for all examples is PL/python, but it works the same with Perl/Lua... And next language is C, to write extra low level extensions, accessing the whole server internals.And finally, you'll learn how to contribute to the extension network and use your functions to spread accross servers using PL/Proxy.It's really a great book, I was looking forward reading it, and it met my expectations. I needed a book to push me forward in my server side programming, giving general guidance and suggestions. It's not a SQL reference, it would require many many books while still being far from exhaustive. But it's a deep Server Programming introduction. And it is good. The introduction comes also handy to teach your collegues about that.
Amazon Verified review Amazon
Brian Wells Oct 05, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Not something you'd want to pay top dollar for, as it does not cover newer developments, but for a newcomer it's a great intro to everything up through 2015, IMHO. Look for a used copy under $10 and you'll be pleased with the purchase. (I doubt the 2nd edition merits the prices I am seeing, but the 1st edition can be found cheaply)
Amazon Verified review Amazon
B. Walter Finn Jan 25, 2014
Full star icon Full star icon Full star icon Full star icon Full star icon 5
There seems to be more code than explanation... that's perfectly fine. I read "MySQL Stored Procedure Programming" by Guy Harrison as well as a few Python books before this one, so I was comfortable with the material and was able to study the code and make some sense of it. An essential reference for anyone who prefers a tutorial style over cryptic reference documentation. Has examples that can be adapted and applied. I would recommend to anyone before starting their next project. It's always good to know what options you have available to meet business requirements, and not all are at the application layer.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.