Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Financial Modeling Using Quantum Computing

You're reading from   Financial Modeling Using Quantum Computing Design and manage quantum machine learning solutions for financial analysis and decision making

Arrow left icon
Product type Paperback
Published in May 2023
Publisher Packt
ISBN-13 9781804618424
Length 292 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (4):
Arrow left icon
Iraitz Montalban Iraitz Montalban
Author Profile Icon Iraitz Montalban
Iraitz Montalban
Anshul Saxena Anshul Saxena
Author Profile Icon Anshul Saxena
Anshul Saxena
Javier Mancilla Javier Mancilla
Author Profile Icon Javier Mancilla
Javier Mancilla
Christophe Pere Christophe Pere
Author Profile Icon Christophe Pere
Christophe Pere
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Basic Applications of Quantum Computing in Finance
2. Chapter 1: Quantum Computing Paradigm FREE CHAPTER 3. Chapter 2: Quantum Machine Learning Algorithms and Their Ecosystem 4. Chapter 3: Quantum Finance Landscape 5. Part 2: Advanced Applications of Quantum Computing in Finance
6. Chapter 4: Derivative Valuation 7. Chapter 5: Portfolio Management 8. Chapter 6: Credit Risk Analytics 9. Chapter 7: Implementation in Quantum Clouds 10. Part 3: Upcoming Quantum Scenario
11. Chapter 8: Simulators and HPC’s Role in the NISQ Era 12. Chapter 9: NISQ Quantum Hardware Roadmap 13. Chapter 10: Business Implementation 14. Index 15. Other Books You May Enjoy

Conclusion

As mentioned earlier, even if accuracy is a common measure from the classification report that most people will look at, the way to treat this kind of imbalanced data scenario is to compare the models using a balanced accuracy score, or AUC score, which in this case are the same, since it is a binary classification challenge.

Figure 6.8 – A comparison of classification results between classical and hybrid quantum-classical methods

Figure 6.8 – A comparison of classification results between classical and hybrid quantum-classical methods

At first glance, the results do not appear to be conclusive about the benefits of using hybrid quantum-classical for classification problems that the finance sector may face. However, the purpose of the exercise in this chapter is to get people to think about their own business challenges and do more research, since we can see that quantum machine learning could be at least equal or slightly better than classical ML methods (e.g., QSVC versus SVC). When any incremental benefit is achieved in terms of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image